{"title":"社会老龄化与高阶互动:社会选择性可提高老年人传播知识的能力。","authors":"Matthew J Hasenjager, Nina H Fefferman","doi":"10.1098/rstb.2022.0461","DOIUrl":null,"url":null,"abstract":"<p><p>In long-lived organisms, experience can accumulate with age, such that older individuals may act as repositories of ecological and social knowledge. Such knowledge is often beneficial and can spread via social transmission, leading to the expectation that ageing individuals will remain socially well-integrated. However, social ageing involves multiple processes that modulate the relationship between age and social connectivity in complex ways. We developed a generative model to explore how social ageing may drive changes in social network position and shape older individuals' capacity to transmit knowledge to others. We further employ novel hypernetwork analyses that capture higher-order interactions (i.e. involving ≥ 3 participants) to reveal potential relationships between age and sociality that conventional dyadic networks may overlook. We find that older individuals in our simulations effectively facilitate transmission across a range of scenarios, especially when transmission resembles a complex contagion or when social selectivity (i.e. prioritization of key relationships) rapidly emerges with age. These patterns result from the formation of tight-knit sets of older associates that co-occur in multiple groups, thereby reinforcing one another's capacity to transmit knowledge. Our findings suggest key avenues for future empirical work and illustrate the use of hypernetworks in advancing the study of social behaviour.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513644/pdf/","citationCount":"0","resultStr":"{\"title\":\"Social ageing and higher-order interactions: social selectiveness can enhance older individuals' capacity to transmit knowledge.\",\"authors\":\"Matthew J Hasenjager, Nina H Fefferman\",\"doi\":\"10.1098/rstb.2022.0461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In long-lived organisms, experience can accumulate with age, such that older individuals may act as repositories of ecological and social knowledge. Such knowledge is often beneficial and can spread via social transmission, leading to the expectation that ageing individuals will remain socially well-integrated. However, social ageing involves multiple processes that modulate the relationship between age and social connectivity in complex ways. We developed a generative model to explore how social ageing may drive changes in social network position and shape older individuals' capacity to transmit knowledge to others. We further employ novel hypernetwork analyses that capture higher-order interactions (i.e. involving ≥ 3 participants) to reveal potential relationships between age and sociality that conventional dyadic networks may overlook. We find that older individuals in our simulations effectively facilitate transmission across a range of scenarios, especially when transmission resembles a complex contagion or when social selectivity (i.e. prioritization of key relationships) rapidly emerges with age. These patterns result from the formation of tight-knit sets of older associates that co-occur in multiple groups, thereby reinforcing one another's capacity to transmit knowledge. Our findings suggest key avenues for future empirical work and illustrate the use of hypernetworks in advancing the study of social behaviour.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.</p>\",\"PeriodicalId\":19872,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513644/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rstb.2022.0461\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2022.0461","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Social ageing and higher-order interactions: social selectiveness can enhance older individuals' capacity to transmit knowledge.
In long-lived organisms, experience can accumulate with age, such that older individuals may act as repositories of ecological and social knowledge. Such knowledge is often beneficial and can spread via social transmission, leading to the expectation that ageing individuals will remain socially well-integrated. However, social ageing involves multiple processes that modulate the relationship between age and social connectivity in complex ways. We developed a generative model to explore how social ageing may drive changes in social network position and shape older individuals' capacity to transmit knowledge to others. We further employ novel hypernetwork analyses that capture higher-order interactions (i.e. involving ≥ 3 participants) to reveal potential relationships between age and sociality that conventional dyadic networks may overlook. We find that older individuals in our simulations effectively facilitate transmission across a range of scenarios, especially when transmission resembles a complex contagion or when social selectivity (i.e. prioritization of key relationships) rapidly emerges with age. These patterns result from the formation of tight-knit sets of older associates that co-occur in multiple groups, thereby reinforcing one another's capacity to transmit knowledge. Our findings suggest key avenues for future empirical work and illustrate the use of hypernetworks in advancing the study of social behaviour.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.