{"title":"牙龈卟啉菌GroEL通过基质金属蛋白酶-2在血管平滑肌细胞中的SUMO化加速腹主动脉瘤的形成:激活 MMP-2 的新发现。","authors":"Yi-Wen Lin, Feng-Yen Lin, Ze-Hao Lai, Chien-Sung Tsai, Yi-Ting Tsai, Yen-Sung Huang, Chen-Wei Liu","doi":"10.1111/omi.12487","DOIUrl":null,"url":null,"abstract":"<p><p>Infection is a known cause of abdominal aortic aneurysm (AAA), and matrix metalloproteases-2 (MMP-2) secreted by vascular smooth muscle cells (SMCs) plays a key role in the structural disruption of the middle layer of the arteries during AAA progression. The periodontal pathogen Porphyromonas gingivalis is highly associated with the progression of periodontitis. GroEL protein of periodontal pathogens is an important virulence factor that can invade the body through either the bloodstream or digestive tract and is associated with numerous systemic diseases. Although P. gingivalis aggravates AAA by increasing the expression of MMP-2 in animal studies, the molecular mechanism through which P. gingivalis regulates the expression of MMP-2 is still unknown and requires further investigation. In this study, we first confirmed through animal experiments that P. gingivalis GroEL promotes MMP-2 secretion from vascular SMCs, thereby aggravating Ang II-induced aortic remodeling and AAA formation. In addition, rat vascular SMCs and A7r5 cells were used to investigate the underlying mechanisms in vitro. The results demonstrated that GroEL can promote the interaction between the K639 site of MMP-2 and SUMO-1, leading to MMP-2 SUMOylation, which inhibits the reoccurrence of non-K639-mediated monoubiquitylation. Hence, the monoubiquitylation-mediated lysosomal degradation of MMP-2 is inhibited, consequently promoting MMP-2 stability and production. SUMOylation may facilitate intra-endoplasmic reticulum (ER) and Golgi trafficking of MMP-2, thereby enhancing its transport capacity. In conclusion, this is the first report demonstrating the presence of a novel posttranslational modification, SUMOylation, in the MMP family, suggesting that P. gingivalis GroEL may exacerbate AAA formation by increasing MMP-2 production through SUMOylation in vascular SMCs. This study also provides a novel perspective on the role of SUMOylation in MMP-2-induced systemic diseases.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porphyromonas gingivalis GroEL accelerates abdominal aortic aneurysm formation by matrix metalloproteinase-2 SUMOylation in vascular smooth muscle cells: A novel finding for the activation of MMP-2.\",\"authors\":\"Yi-Wen Lin, Feng-Yen Lin, Ze-Hao Lai, Chien-Sung Tsai, Yi-Ting Tsai, Yen-Sung Huang, Chen-Wei Liu\",\"doi\":\"10.1111/omi.12487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infection is a known cause of abdominal aortic aneurysm (AAA), and matrix metalloproteases-2 (MMP-2) secreted by vascular smooth muscle cells (SMCs) plays a key role in the structural disruption of the middle layer of the arteries during AAA progression. The periodontal pathogen Porphyromonas gingivalis is highly associated with the progression of periodontitis. GroEL protein of periodontal pathogens is an important virulence factor that can invade the body through either the bloodstream or digestive tract and is associated with numerous systemic diseases. Although P. gingivalis aggravates AAA by increasing the expression of MMP-2 in animal studies, the molecular mechanism through which P. gingivalis regulates the expression of MMP-2 is still unknown and requires further investigation. In this study, we first confirmed through animal experiments that P. gingivalis GroEL promotes MMP-2 secretion from vascular SMCs, thereby aggravating Ang II-induced aortic remodeling and AAA formation. In addition, rat vascular SMCs and A7r5 cells were used to investigate the underlying mechanisms in vitro. The results demonstrated that GroEL can promote the interaction between the K639 site of MMP-2 and SUMO-1, leading to MMP-2 SUMOylation, which inhibits the reoccurrence of non-K639-mediated monoubiquitylation. Hence, the monoubiquitylation-mediated lysosomal degradation of MMP-2 is inhibited, consequently promoting MMP-2 stability and production. SUMOylation may facilitate intra-endoplasmic reticulum (ER) and Golgi trafficking of MMP-2, thereby enhancing its transport capacity. In conclusion, this is the first report demonstrating the presence of a novel posttranslational modification, SUMOylation, in the MMP family, suggesting that P. gingivalis GroEL may exacerbate AAA formation by increasing MMP-2 production through SUMOylation in vascular SMCs. This study also provides a novel perspective on the role of SUMOylation in MMP-2-induced systemic diseases.</p>\",\"PeriodicalId\":18815,\"journal\":{\"name\":\"Molecular Oral Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/omi.12487\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12487","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Porphyromonas gingivalis GroEL accelerates abdominal aortic aneurysm formation by matrix metalloproteinase-2 SUMOylation in vascular smooth muscle cells: A novel finding for the activation of MMP-2.
Infection is a known cause of abdominal aortic aneurysm (AAA), and matrix metalloproteases-2 (MMP-2) secreted by vascular smooth muscle cells (SMCs) plays a key role in the structural disruption of the middle layer of the arteries during AAA progression. The periodontal pathogen Porphyromonas gingivalis is highly associated with the progression of periodontitis. GroEL protein of periodontal pathogens is an important virulence factor that can invade the body through either the bloodstream or digestive tract and is associated with numerous systemic diseases. Although P. gingivalis aggravates AAA by increasing the expression of MMP-2 in animal studies, the molecular mechanism through which P. gingivalis regulates the expression of MMP-2 is still unknown and requires further investigation. In this study, we first confirmed through animal experiments that P. gingivalis GroEL promotes MMP-2 secretion from vascular SMCs, thereby aggravating Ang II-induced aortic remodeling and AAA formation. In addition, rat vascular SMCs and A7r5 cells were used to investigate the underlying mechanisms in vitro. The results demonstrated that GroEL can promote the interaction between the K639 site of MMP-2 and SUMO-1, leading to MMP-2 SUMOylation, which inhibits the reoccurrence of non-K639-mediated monoubiquitylation. Hence, the monoubiquitylation-mediated lysosomal degradation of MMP-2 is inhibited, consequently promoting MMP-2 stability and production. SUMOylation may facilitate intra-endoplasmic reticulum (ER) and Golgi trafficking of MMP-2, thereby enhancing its transport capacity. In conclusion, this is the first report demonstrating the presence of a novel posttranslational modification, SUMOylation, in the MMP family, suggesting that P. gingivalis GroEL may exacerbate AAA formation by increasing MMP-2 production through SUMOylation in vascular SMCs. This study also provides a novel perspective on the role of SUMOylation in MMP-2-induced systemic diseases.
期刊介绍:
Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections.
Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal.
The journal does not publish Short Communications or Letters to the Editor.
Molecular Oral Microbiology is published bimonthly.