钠-葡萄糖共转运体(SGLTs)的 PET 成像:揭示糖尿病和肿瘤的代谢动力学。

IF 7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Konrad Klimek , Xinyu Chen , Takanori Sasaki , Daniel Groener , Rudolf A. Werner , Takahiro Higuchi
{"title":"钠-葡萄糖共转运体(SGLTs)的 PET 成像:揭示糖尿病和肿瘤的代谢动力学。","authors":"Konrad Klimek ,&nbsp;Xinyu Chen ,&nbsp;Takanori Sasaki ,&nbsp;Daniel Groener ,&nbsp;Rudolf A. Werner ,&nbsp;Takahiro Higuchi","doi":"10.1016/j.molmet.2024.102055","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Sodium-glucose cotransporters (SGLTs) play a crucial role in glucose regulation and are essential therapeutic targets for diabetes management. Recent advancements have leveraged SGLT-targeted PET imaging to examine these transporters' roles in both health and disease.</div></div><div><h3>Scope of Review</h3><div>This review highlights recent innovations in PET imaging targeting SGLTs, with a particular focus on SGLT-specific radiotracers, such as alpha-methyl-4-deoxy-4-<sup>18</sup>F-fluoro-<span>d</span>-glucopyranoside (Me-4FDG). It emphasizes the advantages of these radiotracers over conventional <sup>18</sup>F-2-fluoro-2-deoxy-<span>d</span>-glucose (2-FDG) imaging, especially in assessing SGLT activity. Additionally, the review addresses their potential in evaluating the pharmacodynamics of SGLT inhibitors, investigating metabolic changes in diabetes, and staging cancers.</div></div><div><h3>Major Conclusions</h3><div>SGLT-targeted PET imaging offers promising improvements in diagnostic accuracy and therapeutic planning. The findings underscore the physiological and pathological significance of SGLTs, indicating that this imaging approach could shape future diagnostic and therapeutic strategies in metabolic and oncologic fields.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"90 ","pages":"Article 102055"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology\",\"authors\":\"Konrad Klimek ,&nbsp;Xinyu Chen ,&nbsp;Takanori Sasaki ,&nbsp;Daniel Groener ,&nbsp;Rudolf A. Werner ,&nbsp;Takahiro Higuchi\",\"doi\":\"10.1016/j.molmet.2024.102055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Sodium-glucose cotransporters (SGLTs) play a crucial role in glucose regulation and are essential therapeutic targets for diabetes management. Recent advancements have leveraged SGLT-targeted PET imaging to examine these transporters' roles in both health and disease.</div></div><div><h3>Scope of Review</h3><div>This review highlights recent innovations in PET imaging targeting SGLTs, with a particular focus on SGLT-specific radiotracers, such as alpha-methyl-4-deoxy-4-<sup>18</sup>F-fluoro-<span>d</span>-glucopyranoside (Me-4FDG). It emphasizes the advantages of these radiotracers over conventional <sup>18</sup>F-2-fluoro-2-deoxy-<span>d</span>-glucose (2-FDG) imaging, especially in assessing SGLT activity. Additionally, the review addresses their potential in evaluating the pharmacodynamics of SGLT inhibitors, investigating metabolic changes in diabetes, and staging cancers.</div></div><div><h3>Major Conclusions</h3><div>SGLT-targeted PET imaging offers promising improvements in diagnostic accuracy and therapeutic planning. The findings underscore the physiological and pathological significance of SGLTs, indicating that this imaging approach could shape future diagnostic and therapeutic strategies in metabolic and oncologic fields.</div></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"90 \",\"pages\":\"Article 102055\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001868\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877824001868","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

利用钠-葡萄糖共转运体(SGLT)底物进行正电子发射断层扫描(PET)成像的出现,为了解各种疾病状态下的代谢改变开辟了一个新领域。SGLT 同工酶,特别是 SGLT2,在葡萄糖调节中起着关键作用,一直是糖尿病治疗的靶点。SGLT特异性放射性同位素,如α-甲基-4-脱氧-4-18F-氟-D-吡喃葡萄糖苷(Me-4FDG),提供了超越传统18F-2-氟-2-脱氧-D-葡萄糖(2-FDG)成像的机会,允许对SGLT活性进行有针对性的评估。本综述总结了 SGLT PET 成像的最新进展,强调了其对评估 SGLT 抑制剂的药效学、探索糖尿病患者的新陈代谢以及各种癌症分期的影响。这些发现的临床意义表明,治疗方法和诊断准确性可能会发生转变,从而让人们全面了解 SGLT 的生理和病理相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology

PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology

Background

Sodium-glucose cotransporters (SGLTs) play a crucial role in glucose regulation and are essential therapeutic targets for diabetes management. Recent advancements have leveraged SGLT-targeted PET imaging to examine these transporters' roles in both health and disease.

Scope of Review

This review highlights recent innovations in PET imaging targeting SGLTs, with a particular focus on SGLT-specific radiotracers, such as alpha-methyl-4-deoxy-4-18F-fluoro-d-glucopyranoside (Me-4FDG). It emphasizes the advantages of these radiotracers over conventional 18F-2-fluoro-2-deoxy-d-glucose (2-FDG) imaging, especially in assessing SGLT activity. Additionally, the review addresses their potential in evaluating the pharmacodynamics of SGLT inhibitors, investigating metabolic changes in diabetes, and staging cancers.

Major Conclusions

SGLT-targeted PET imaging offers promising improvements in diagnostic accuracy and therapeutic planning. The findings underscore the physiological and pathological significance of SGLTs, indicating that this imaging approach could shape future diagnostic and therapeutic strategies in metabolic and oncologic fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信