胃癌细胞的靶向动态磷酸蛋白基因组学分析表明,宿主免疫可带来生存益处。

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Kohei Kume, Midori Iida, Takeshi Iwaya, Akiko Yashima-Abo, Yuka Koizumi, Akari Endo, Kaitlin Wade, Hayato Hiraki, Valerie Calvert, Julia Wulfkuhle, Virginia Espina, Doris R Siwak, Yiling Lu, Kazuhiro Takemoto, Yutaka Suzuki, Yasushi Sasaki, Takashi Tokino, Emanuel Petricoin, Lance A Liotta, Gordon B Mills, Satoshi S Nishizuka
{"title":"胃癌细胞的靶向动态磷酸蛋白基因组学分析表明,宿主免疫可带来生存益处。","authors":"Kohei Kume, Midori Iida, Takeshi Iwaya, Akiko Yashima-Abo, Yuka Koizumi, Akari Endo, Kaitlin Wade, Hayato Hiraki, Valerie Calvert, Julia Wulfkuhle, Virginia Espina, Doris R Siwak, Yiling Lu, Kazuhiro Takemoto, Yutaka Suzuki, Yasushi Sasaki, Takashi Tokino, Emanuel Petricoin, Lance A Liotta, Gordon B Mills, Satoshi S Nishizuka","doi":"10.1016/j.mcpro.2024.100870","DOIUrl":null,"url":null,"abstract":"<p><p>Despite of massive emergence of molecular targeting drugs, the mainstay of advanced gastric cancer (GC) therapy is DNA-damaging drugs. Using a reverse-phase protein array-based proteogenomic analysis of a panel of 8 GC cell lines, we identified genetic alterations and signaling pathways, potentially associated with resistance to DNA-damaging drugs, including 5-fluorouracil (5FU), cisplatin, and etoposide. Resistance to cisplatin and etoposide, but not 5FU, was negatively associated with global copy number loss, vimentin expression, and caspase activity, which are considered hallmarks of previously established EMT subtype. The segregation of 19,392 protein expression time courses by sensitive and resistant cell lines for the drugs tested revealed that 5FU-resistant cell lines had lower changes in global protein dynamics, suggesting their robust protein level regulation, than their sensitive counterparts, whereas the cell lines that are resistant to other drugs showed increased protein dynamics in response to each drug. Despite faint global protein dynamics, 5FU-resistant cell lines showed increased signal transducer and activator of transcription 1 phosphorylation and PD-L1 expression in response to 5FU. In publicly available cohort data, expression of signal transducer and activator of transcription 1 and NFκB target genes induced by proinflammatory cytokines was associated with prolonged survival in GC. In our validation cohort, total lymphocyte count, rather than PD-L1 positivity, predicted a better relapse-free survival rate in GC patients with 5FU-based adjuvant chemotherapy than those with surgery alone. Moreover, total lymphocyte count<sup>+</sup> patients who had no survival benefit from adjuvant chemotherapy were discriminated by expression of IκBα, a potent negative regulator of NFκB. Collectively, our results suggest that 5FU resistance observed in cell lines may be overcome by host immunity or by combination therapy with immune checkpoint blockade.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100870"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted Dynamic Phospho-Proteogenomic Analysis of Gastric Cancer Cells Suggests Host Immunity Provides Survival Benefit.\",\"authors\":\"Kohei Kume, Midori Iida, Takeshi Iwaya, Akiko Yashima-Abo, Yuka Koizumi, Akari Endo, Kaitlin Wade, Hayato Hiraki, Valerie Calvert, Julia Wulfkuhle, Virginia Espina, Doris R Siwak, Yiling Lu, Kazuhiro Takemoto, Yutaka Suzuki, Yasushi Sasaki, Takashi Tokino, Emanuel Petricoin, Lance A Liotta, Gordon B Mills, Satoshi S Nishizuka\",\"doi\":\"10.1016/j.mcpro.2024.100870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite of massive emergence of molecular targeting drugs, the mainstay of advanced gastric cancer (GC) therapy is DNA-damaging drugs. Using a reverse-phase protein array-based proteogenomic analysis of a panel of 8 GC cell lines, we identified genetic alterations and signaling pathways, potentially associated with resistance to DNA-damaging drugs, including 5-fluorouracil (5FU), cisplatin, and etoposide. Resistance to cisplatin and etoposide, but not 5FU, was negatively associated with global copy number loss, vimentin expression, and caspase activity, which are considered hallmarks of previously established EMT subtype. The segregation of 19,392 protein expression time courses by sensitive and resistant cell lines for the drugs tested revealed that 5FU-resistant cell lines had lower changes in global protein dynamics, suggesting their robust protein level regulation, than their sensitive counterparts, whereas the cell lines that are resistant to other drugs showed increased protein dynamics in response to each drug. Despite faint global protein dynamics, 5FU-resistant cell lines showed increased signal transducer and activator of transcription 1 phosphorylation and PD-L1 expression in response to 5FU. In publicly available cohort data, expression of signal transducer and activator of transcription 1 and NFκB target genes induced by proinflammatory cytokines was associated with prolonged survival in GC. In our validation cohort, total lymphocyte count, rather than PD-L1 positivity, predicted a better relapse-free survival rate in GC patients with 5FU-based adjuvant chemotherapy than those with surgery alone. Moreover, total lymphocyte count<sup>+</sup> patients who had no survival benefit from adjuvant chemotherapy were discriminated by expression of IκBα, a potent negative regulator of NFκB. Collectively, our results suggest that 5FU resistance observed in cell lines may be overcome by host immunity or by combination therapy with immune checkpoint blockade.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100870\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2024.100870\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100870","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

尽管出现了大量分子靶向药物,但晚期胃癌(GC)的主要治疗手段仍是DNA损伤药物。通过对八种胃癌细胞系进行基于反相蛋白质阵列的蛋白质基因组分析,我们发现了可能与对DNA损伤药物(包括5-氟尿嘧啶(5FU)、顺铂和依托泊苷)的耐药性有关的基因改变和信号通路。对顺铂和依托泊苷(而非 5FU )的耐药性与全局拷贝数丢失、波形蛋白表达和 Caspase 活性呈负相关,而这些因素被认为是先前确定的 EMT 亚型的标志。对测试药物敏感和耐药细胞系的19,392个蛋白质表达时间过程的分离显示,与敏感细胞系相比,对5FU耐药的细胞系的全局蛋白质动态变化较小,这表明它们的蛋白质水平调节能力较强,而对其他药物耐药的细胞系对每种药物的反应都显示出蛋白质动态变化增加。尽管全局蛋白动态变化微弱,但对5FU耐药的细胞系对5FU的反应显示STAT1磷酸化和PD-L1表达增加。在公开的队列数据中,促炎细胞因子诱导的 STAT1 和 NFκB 靶基因的表达与 GC 存活时间的延长有关。在我们的验证队列中,总淋巴细胞计数(TLC)而非 PD-L1 阳性预示着接受 5FU 辅助化疗的 GC 患者的无复发生存率优于仅接受手术治疗的患者。此外,TLC+患者无法从辅助化疗中获益,而IκBα是NFκB的一种有效负调控因子,通过IκBα的表达可以区分TLC+患者。总之,我们的研究结果表明,在细胞系中观察到的5FU耐药性可以通过宿主免疫或与免疫检查点阻断剂联合治疗来克服。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeted Dynamic Phospho-Proteogenomic Analysis of Gastric Cancer Cells Suggests Host Immunity Provides Survival Benefit.

Despite of massive emergence of molecular targeting drugs, the mainstay of advanced gastric cancer (GC) therapy is DNA-damaging drugs. Using a reverse-phase protein array-based proteogenomic analysis of a panel of 8 GC cell lines, we identified genetic alterations and signaling pathways, potentially associated with resistance to DNA-damaging drugs, including 5-fluorouracil (5FU), cisplatin, and etoposide. Resistance to cisplatin and etoposide, but not 5FU, was negatively associated with global copy number loss, vimentin expression, and caspase activity, which are considered hallmarks of previously established EMT subtype. The segregation of 19,392 protein expression time courses by sensitive and resistant cell lines for the drugs tested revealed that 5FU-resistant cell lines had lower changes in global protein dynamics, suggesting their robust protein level regulation, than their sensitive counterparts, whereas the cell lines that are resistant to other drugs showed increased protein dynamics in response to each drug. Despite faint global protein dynamics, 5FU-resistant cell lines showed increased signal transducer and activator of transcription 1 phosphorylation and PD-L1 expression in response to 5FU. In publicly available cohort data, expression of signal transducer and activator of transcription 1 and NFκB target genes induced by proinflammatory cytokines was associated with prolonged survival in GC. In our validation cohort, total lymphocyte count, rather than PD-L1 positivity, predicted a better relapse-free survival rate in GC patients with 5FU-based adjuvant chemotherapy than those with surgery alone. Moreover, total lymphocyte count+ patients who had no survival benefit from adjuvant chemotherapy were discriminated by expression of IκBα, a potent negative regulator of NFκB. Collectively, our results suggest that 5FU resistance observed in cell lines may be overcome by host immunity or by combination therapy with immune checkpoint blockade.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信