Prabu Paramasivam, Seong Won Choi, Ranjana Poddar, Surojit Paul
{"title":"神经元酪氨酸磷酸酶 STEP 的损伤会加重高血压条件下缺血后的炎症和脑损伤。","authors":"Prabu Paramasivam, Seong Won Choi, Ranjana Poddar, Surojit Paul","doi":"10.1186/s12974-024-03227-z","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertension is associated with poor outcome and higher mortality in patients with ischemic stroke. The impairment of adaptive vascular mechanisms under hypertensive condition compromises collateral blood flow after arterial occlusion in patients with acute ischemic stroke resulting in hypoperfusion. The increased oxidative stress caused by hypoperfusion is thought to be a trigger for the rapid evolution of ischemic infarct volume under hypertensive condition. However, the cellular factors and pathways that contribute to the exacerbation of ischemic brain injury under hypertensive condition is not yet understood. The current study reveals that predisposition to hypertension leads to basal loss of function of the neuron-specific tyrosine phosphatase STEP, which plays a crucial role in neuroprotection against excitotoxic insult. The findings further show that a mild ischemic insult in hypertensive rats triggers an early onset and sustained activation of the neuronal extracellular signal regulated kinase (ERK MAPK), a member of the mitogen activated protein kinase family and a substrate of STEP. This leads to rapid increase in the activation of neuronal NF-κB, expression of neuronal cyclooxygenase-2 and subsequent biosynthesis of the pro-inflammatory mediator prostaglandin E2, resulting in rapid morphological transformation of microglia to the pro-inflammatory state and subsequent exacerbation of ischemic brain injury. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the pro-inflammatory response in neurons, activation of microglia, and ischemic brain injury. The findings suggest that the basal loss of STEP function under hypertensive condition contributes to the exacerbation of ischemic brain injury by enhancing post-ischemic inflammatory response. The study not only presents a novel role of STEP in regulating neuroimmune communication but also highlights the therapeutic potential of a STEP-mimetic in mitigating ischemic brain damage under hypertensive condition.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"271"},"PeriodicalIF":9.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515672/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impairment of neuronal tyrosine phosphatase STEP worsens post-ischemic inflammation and brain injury under hypertensive condition.\",\"authors\":\"Prabu Paramasivam, Seong Won Choi, Ranjana Poddar, Surojit Paul\",\"doi\":\"10.1186/s12974-024-03227-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypertension is associated with poor outcome and higher mortality in patients with ischemic stroke. The impairment of adaptive vascular mechanisms under hypertensive condition compromises collateral blood flow after arterial occlusion in patients with acute ischemic stroke resulting in hypoperfusion. The increased oxidative stress caused by hypoperfusion is thought to be a trigger for the rapid evolution of ischemic infarct volume under hypertensive condition. However, the cellular factors and pathways that contribute to the exacerbation of ischemic brain injury under hypertensive condition is not yet understood. The current study reveals that predisposition to hypertension leads to basal loss of function of the neuron-specific tyrosine phosphatase STEP, which plays a crucial role in neuroprotection against excitotoxic insult. The findings further show that a mild ischemic insult in hypertensive rats triggers an early onset and sustained activation of the neuronal extracellular signal regulated kinase (ERK MAPK), a member of the mitogen activated protein kinase family and a substrate of STEP. This leads to rapid increase in the activation of neuronal NF-κB, expression of neuronal cyclooxygenase-2 and subsequent biosynthesis of the pro-inflammatory mediator prostaglandin E2, resulting in rapid morphological transformation of microglia to the pro-inflammatory state and subsequent exacerbation of ischemic brain injury. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the pro-inflammatory response in neurons, activation of microglia, and ischemic brain injury. The findings suggest that the basal loss of STEP function under hypertensive condition contributes to the exacerbation of ischemic brain injury by enhancing post-ischemic inflammatory response. The study not only presents a novel role of STEP in regulating neuroimmune communication but also highlights the therapeutic potential of a STEP-mimetic in mitigating ischemic brain damage under hypertensive condition.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"21 1\",\"pages\":\"271\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-024-03227-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03227-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Impairment of neuronal tyrosine phosphatase STEP worsens post-ischemic inflammation and brain injury under hypertensive condition.
Hypertension is associated with poor outcome and higher mortality in patients with ischemic stroke. The impairment of adaptive vascular mechanisms under hypertensive condition compromises collateral blood flow after arterial occlusion in patients with acute ischemic stroke resulting in hypoperfusion. The increased oxidative stress caused by hypoperfusion is thought to be a trigger for the rapid evolution of ischemic infarct volume under hypertensive condition. However, the cellular factors and pathways that contribute to the exacerbation of ischemic brain injury under hypertensive condition is not yet understood. The current study reveals that predisposition to hypertension leads to basal loss of function of the neuron-specific tyrosine phosphatase STEP, which plays a crucial role in neuroprotection against excitotoxic insult. The findings further show that a mild ischemic insult in hypertensive rats triggers an early onset and sustained activation of the neuronal extracellular signal regulated kinase (ERK MAPK), a member of the mitogen activated protein kinase family and a substrate of STEP. This leads to rapid increase in the activation of neuronal NF-κB, expression of neuronal cyclooxygenase-2 and subsequent biosynthesis of the pro-inflammatory mediator prostaglandin E2, resulting in rapid morphological transformation of microglia to the pro-inflammatory state and subsequent exacerbation of ischemic brain injury. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the pro-inflammatory response in neurons, activation of microglia, and ischemic brain injury. The findings suggest that the basal loss of STEP function under hypertensive condition contributes to the exacerbation of ischemic brain injury by enhancing post-ischemic inflammatory response. The study not only presents a novel role of STEP in regulating neuroimmune communication but also highlights the therapeutic potential of a STEP-mimetic in mitigating ischemic brain damage under hypertensive condition.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.