果蝇 Canoe 的双 Ras 关联(RA)域在形态发生过程中连接细胞连接和细胞骨架方面具有不同的作用。

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Journal of cell science Pub Date : 2024-12-01 Epub Date: 2024-12-11 DOI:10.1242/jcs.263546
Emily D McParland, Noah J Gurley, Leah R Wolfsberg, T Amber Butcher, Abhi Bhattarai, Corbin C Jensen, Ruth I Johnson, Kevin C Slep, Mark Peifer
{"title":"果蝇 Canoe 的双 Ras 关联(RA)域在形态发生过程中连接细胞连接和细胞骨架方面具有不同的作用。","authors":"Emily D McParland, Noah J Gurley, Leah R Wolfsberg, T Amber Butcher, Abhi Bhattarai, Corbin C Jensen, Ruth I Johnson, Kevin C Slep, Mark Peifer","doi":"10.1242/jcs.263546","DOIUrl":null,"url":null,"abstract":"<p><p>During development cells must change shape and move without disrupting dynamic tissue architecture. This requires robust linkage of cell-cell adherens junctions to the force-generating actomyosin cytoskeleton. Drosophila Canoe and mammalian afadin play key roles in the regulation of such linkages. One central task for the field is defining mechanisms by which upstream inputs from Ras-family GTPases regulate Canoe and afadin. These proteins are unusual in sharing two tandem Ras-association (RA) domains - RA1 and RA2 - which when deleted virtually eliminate Canoe function. Work in vitro has suggested that RA1 and RA2 differ in GTPase affinity, but their individual functions in vivo remain unknown. Combining bioinformatic and biochemical approaches, we find that both RA1 and RA2 bind to active Rap1 with similar affinities, and that their conserved N-terminal extensions enhance binding. We created Drosophila canoe mutants to test RA1 and RA2 function in vivo. Despite their similar affinities for Rap1, RA1 and RA2 play strikingly different roles. Deleting RA1 virtually eliminates Canoe function, whereas mutants lacking RA2 are viable and fertile but have defects in junctional reinforcement in embryos and during pupal eye development. These data significantly expand our understanding of the regulation of adherens junction-cytoskeletal linkages.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dual Ras-association domains of Drosophila Canoe have differential roles in linking cell junctions to the cytoskeleton during morphogenesis.\",\"authors\":\"Emily D McParland, Noah J Gurley, Leah R Wolfsberg, T Amber Butcher, Abhi Bhattarai, Corbin C Jensen, Ruth I Johnson, Kevin C Slep, Mark Peifer\",\"doi\":\"10.1242/jcs.263546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During development cells must change shape and move without disrupting dynamic tissue architecture. This requires robust linkage of cell-cell adherens junctions to the force-generating actomyosin cytoskeleton. Drosophila Canoe and mammalian afadin play key roles in the regulation of such linkages. One central task for the field is defining mechanisms by which upstream inputs from Ras-family GTPases regulate Canoe and afadin. These proteins are unusual in sharing two tandem Ras-association (RA) domains - RA1 and RA2 - which when deleted virtually eliminate Canoe function. Work in vitro has suggested that RA1 and RA2 differ in GTPase affinity, but their individual functions in vivo remain unknown. Combining bioinformatic and biochemical approaches, we find that both RA1 and RA2 bind to active Rap1 with similar affinities, and that their conserved N-terminal extensions enhance binding. We created Drosophila canoe mutants to test RA1 and RA2 function in vivo. Despite their similar affinities for Rap1, RA1 and RA2 play strikingly different roles. Deleting RA1 virtually eliminates Canoe function, whereas mutants lacking RA2 are viable and fertile but have defects in junctional reinforcement in embryos and during pupal eye development. These data significantly expand our understanding of the regulation of adherens junction-cytoskeletal linkages.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.263546\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263546","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在发育过程中,细胞必须在不破坏动态组织结构的情况下改变形状和移动。这就要求细胞-细胞粘连接头与产生力的肌动蛋白细胞骨架紧密相连。果蝇的 Canoe 和哺乳动物的 Afadin 发挥着关键作用。该领域的一项核心任务是确定 Ras 家族 GTP 酶上游输入调控 Canoe/Afadin 的机制。它们的不同之处在于共用两个串联的 Ras-关联(RA)结构域,当删除这两个结构域时,Canoe 的功能几乎消失。体外研究表明,RA1 和 RA2 的 GTPase 亲和力不同,但它们在体内的功能仍不清楚。结合生物信息学和生物化学方法,我们发现 RA1 和 RA2 与活性 Rap1 的结合亲和力相似,而且它们保守的 N 端延伸部分增强了结合。我们创建了果蝇独木舟突变体来测试 RA1 和 RA2 在体内的功能。尽管 RA1 和 RA2 与 Rap1 的亲和力相似,但它们的作用却截然不同。删除 RA1 几乎会消除独木舟的功能,而缺乏 RA2 的突变体可以存活和繁殖,但在胚胎和蛹眼发育过程中存在连接强化缺陷。这些数据极大地扩展了我们对粘连接头:细胞骨架连接调控的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dual Ras-association domains of Drosophila Canoe have differential roles in linking cell junctions to the cytoskeleton during morphogenesis.

During development cells must change shape and move without disrupting dynamic tissue architecture. This requires robust linkage of cell-cell adherens junctions to the force-generating actomyosin cytoskeleton. Drosophila Canoe and mammalian afadin play key roles in the regulation of such linkages. One central task for the field is defining mechanisms by which upstream inputs from Ras-family GTPases regulate Canoe and afadin. These proteins are unusual in sharing two tandem Ras-association (RA) domains - RA1 and RA2 - which when deleted virtually eliminate Canoe function. Work in vitro has suggested that RA1 and RA2 differ in GTPase affinity, but their individual functions in vivo remain unknown. Combining bioinformatic and biochemical approaches, we find that both RA1 and RA2 bind to active Rap1 with similar affinities, and that their conserved N-terminal extensions enhance binding. We created Drosophila canoe mutants to test RA1 and RA2 function in vivo. Despite their similar affinities for Rap1, RA1 and RA2 play strikingly different roles. Deleting RA1 virtually eliminates Canoe function, whereas mutants lacking RA2 are viable and fertile but have defects in junctional reinforcement in embryos and during pupal eye development. These data significantly expand our understanding of the regulation of adherens junction-cytoskeletal linkages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信