Ana Carolina Aparecida Gonçalves, Tatiana de Mello Damasco Nunes, Erick Parize, Edileusa Cristina Marques Gerhardt, Gustavo Antônio de Souza, Jörg Scholl, Karl Forchhammer, Luciano Fernandes Huergo
{"title":"在大肠杆菌中,核糖核苷酸单磷酸酶 UmpH 的活性受控于与 GlnK 信号蛋白的相互作用。","authors":"Ana Carolina Aparecida Gonçalves, Tatiana de Mello Damasco Nunes, Erick Parize, Edileusa Cristina Marques Gerhardt, Gustavo Antônio de Souza, Jörg Scholl, Karl Forchhammer, Luciano Fernandes Huergo","doi":"10.1016/j.jbc.2024.107931","DOIUrl":null,"url":null,"abstract":"<p><p>The PII signaling proteins are ubiquitous in prokaryotes serving as crucial metabolic hubs in different metabolic pathways due to their ability to sense and integrate signals of the cellular nitrogen, carbon, and energy levels. In this study we used ligand fishing assays to identify the ribonucleotide monophosphatase UmpH enzyme as a novel target of the PII signaling protein GlnK in Escherichia coli. In vitro analyses showed that UmpH interacts specifically with the PII protein GlnK but not with its paralogue protein GlnB. The UmpH - GlnK complex is modulated by the GlnK uridylylation status and by the levels of the GlnK allosteric effectors ATP, ADP and 2-oxoglutarate. Upon engaging interaction with GlnK, UmpH becomes less active towards its substrate uridine 5'-monophosphate (UMP). We suggest a model where GlnK will physically interact to reduce the UmpH activity during the transition from N-starvation to N-sufficient conditions. Such a mechanism may help the cells to reprogram the fate of UMP from catabolism to anabolism avoiding futile cycling of key nutrients.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107931"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The activity of the ribonucleotide monophosphatase UmpH is controlled by interaction with the GlnK signaling protein in Escherichia coli.\",\"authors\":\"Ana Carolina Aparecida Gonçalves, Tatiana de Mello Damasco Nunes, Erick Parize, Edileusa Cristina Marques Gerhardt, Gustavo Antônio de Souza, Jörg Scholl, Karl Forchhammer, Luciano Fernandes Huergo\",\"doi\":\"10.1016/j.jbc.2024.107931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The PII signaling proteins are ubiquitous in prokaryotes serving as crucial metabolic hubs in different metabolic pathways due to their ability to sense and integrate signals of the cellular nitrogen, carbon, and energy levels. In this study we used ligand fishing assays to identify the ribonucleotide monophosphatase UmpH enzyme as a novel target of the PII signaling protein GlnK in Escherichia coli. In vitro analyses showed that UmpH interacts specifically with the PII protein GlnK but not with its paralogue protein GlnB. The UmpH - GlnK complex is modulated by the GlnK uridylylation status and by the levels of the GlnK allosteric effectors ATP, ADP and 2-oxoglutarate. Upon engaging interaction with GlnK, UmpH becomes less active towards its substrate uridine 5'-monophosphate (UMP). We suggest a model where GlnK will physically interact to reduce the UmpH activity during the transition from N-starvation to N-sufficient conditions. Such a mechanism may help the cells to reprogram the fate of UMP from catabolism to anabolism avoiding futile cycling of key nutrients.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"107931\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2024.107931\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107931","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The activity of the ribonucleotide monophosphatase UmpH is controlled by interaction with the GlnK signaling protein in Escherichia coli.
The PII signaling proteins are ubiquitous in prokaryotes serving as crucial metabolic hubs in different metabolic pathways due to their ability to sense and integrate signals of the cellular nitrogen, carbon, and energy levels. In this study we used ligand fishing assays to identify the ribonucleotide monophosphatase UmpH enzyme as a novel target of the PII signaling protein GlnK in Escherichia coli. In vitro analyses showed that UmpH interacts specifically with the PII protein GlnK but not with its paralogue protein GlnB. The UmpH - GlnK complex is modulated by the GlnK uridylylation status and by the levels of the GlnK allosteric effectors ATP, ADP and 2-oxoglutarate. Upon engaging interaction with GlnK, UmpH becomes less active towards its substrate uridine 5'-monophosphate (UMP). We suggest a model where GlnK will physically interact to reduce the UmpH activity during the transition from N-starvation to N-sufficient conditions. Such a mechanism may help the cells to reprogram the fate of UMP from catabolism to anabolism avoiding futile cycling of key nutrients.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.