一名骨发育不良、鱼鳞病和畸形患者的双侧基因DDX41变体。

IF 3.8 2区 生物学 Q2 GENETICS & HEREDITY
Human Genetics Pub Date : 2024-12-01 Epub Date: 2024-10-25 DOI:10.1007/s00439-024-02708-8
Prashant Sharma, Jason R McFadden, F Graeme Frost, Thomas C Markello, Dorothy K Grange, Wendy J Introne, William A Gahl, May Christine V Malicdan
{"title":"一名骨发育不良、鱼鳞病和畸形患者的双侧基因DDX41变体。","authors":"Prashant Sharma, Jason R McFadden, F Graeme Frost, Thomas C Markello, Dorothy K Grange, Wendy J Introne, William A Gahl, May Christine V Malicdan","doi":"10.1007/s00439-024-02708-8","DOIUrl":null,"url":null,"abstract":"<p><p>DDX41 (DEAD‑box helicase 41) is a member of the largest family of RNA helicases. The DEAD-box RNA helicases share a highly conserved core structure and regulate all aspects of RNA metabolism. The functional role of DDX41 in innate immunity is also highly conserved. DDX41 acts as a sensor of viral DNA and activates the STING-TBK1-IRF3-type I IFN signaling pathway. Germline heterozygous variants in DDX41 have been reported in familial myelodysplasia syndrome (MDS)/acute myeloid leukemia (AML) patients; most patients also acquired a somatic variant in the second DDX41 allele. Here, we report a patient who inherited compound heterozygous DDX41 variants and presented with bone dysplasia, ichthyosis, and dysmorphic features. Functional analyses of the patient-derived dermal fibroblasts revealed a reduced abundance of DDX41 and abrogated activation of the IFN genes through the STING-type I interferon pathway. Genome-wide transcriptome analyses in the patient's fibroblasts revealed significant gene dysregulation and changes in the RNA splicing events. The patient's fibroblasts also displayed upregulation of periostin mRNA expression. Using an RNA binding protein assay, we identified DDX41 as a novel regulator of periostin expression. Our results suggest that functional impairment of DDX41, along with dysregulated periostin expression, likely contributes to this patient's multisystem disorder.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"1445-1457"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576897/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biallelic germline DDX41 variants in a patient with bone dysplasia, ichthyosis, and dysmorphic features.\",\"authors\":\"Prashant Sharma, Jason R McFadden, F Graeme Frost, Thomas C Markello, Dorothy K Grange, Wendy J Introne, William A Gahl, May Christine V Malicdan\",\"doi\":\"10.1007/s00439-024-02708-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DDX41 (DEAD‑box helicase 41) is a member of the largest family of RNA helicases. The DEAD-box RNA helicases share a highly conserved core structure and regulate all aspects of RNA metabolism. The functional role of DDX41 in innate immunity is also highly conserved. DDX41 acts as a sensor of viral DNA and activates the STING-TBK1-IRF3-type I IFN signaling pathway. Germline heterozygous variants in DDX41 have been reported in familial myelodysplasia syndrome (MDS)/acute myeloid leukemia (AML) patients; most patients also acquired a somatic variant in the second DDX41 allele. Here, we report a patient who inherited compound heterozygous DDX41 variants and presented with bone dysplasia, ichthyosis, and dysmorphic features. Functional analyses of the patient-derived dermal fibroblasts revealed a reduced abundance of DDX41 and abrogated activation of the IFN genes through the STING-type I interferon pathway. Genome-wide transcriptome analyses in the patient's fibroblasts revealed significant gene dysregulation and changes in the RNA splicing events. The patient's fibroblasts also displayed upregulation of periostin mRNA expression. Using an RNA binding protein assay, we identified DDX41 as a novel regulator of periostin expression. Our results suggest that functional impairment of DDX41, along with dysregulated periostin expression, likely contributes to this patient's multisystem disorder.</p>\",\"PeriodicalId\":13175,\"journal\":{\"name\":\"Human Genetics\",\"volume\":\" \",\"pages\":\"1445-1457\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00439-024-02708-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02708-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

DDX41(DEAD-box 螺旋酶 41)是最大的 RNA 螺旋酶家族的成员。DEAD-box RNA 螺旋酶具有高度保守的核心结构,调控 RNA 代谢的各个方面。DDX41 在先天性免疫中的功能作用也是高度保守的。DDX41 是病毒 DNA 的传感器,可激活 STING-TBK1-IRF3 I 型 IFN 信号通路。据报道,家族性骨髓增生异常综合征(MDS)/急性髓性白血病(AML)患者中存在 DDX41 的种系杂合变异;大多数患者还获得了第二个 DDX41 等位基因的体细胞变异。在此,我们报告了一名遗传了复合杂合子 DDX41 变体并伴有骨发育不良、鱼鳞病和畸形特征的患者。对患者真皮成纤维细胞的功能分析显示,DDX41丰度降低,通过STING-Ⅰ型干扰素途径激活IFN基因的作用减弱。对患者成纤维细胞进行的全基因组转录组分析显示,基因出现了明显的失调,RNA剪接事件也发生了变化。患者成纤维细胞中的包膜素 mRNA 表达也出现了上调。利用 RNA 结合蛋白测定法,我们发现 DDX41 是一种新型的骨膜增生蛋白表达调节因子。我们的研究结果表明,DDX41的功能障碍以及骨膜增生蛋白表达失调很可能是导致该患者多系统疾病的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biallelic germline DDX41 variants in a patient with bone dysplasia, ichthyosis, and dysmorphic features.

DDX41 (DEAD‑box helicase 41) is a member of the largest family of RNA helicases. The DEAD-box RNA helicases share a highly conserved core structure and regulate all aspects of RNA metabolism. The functional role of DDX41 in innate immunity is also highly conserved. DDX41 acts as a sensor of viral DNA and activates the STING-TBK1-IRF3-type I IFN signaling pathway. Germline heterozygous variants in DDX41 have been reported in familial myelodysplasia syndrome (MDS)/acute myeloid leukemia (AML) patients; most patients also acquired a somatic variant in the second DDX41 allele. Here, we report a patient who inherited compound heterozygous DDX41 variants and presented with bone dysplasia, ichthyosis, and dysmorphic features. Functional analyses of the patient-derived dermal fibroblasts revealed a reduced abundance of DDX41 and abrogated activation of the IFN genes through the STING-type I interferon pathway. Genome-wide transcriptome analyses in the patient's fibroblasts revealed significant gene dysregulation and changes in the RNA splicing events. The patient's fibroblasts also displayed upregulation of periostin mRNA expression. Using an RNA binding protein assay, we identified DDX41 as a novel regulator of periostin expression. Our results suggest that functional impairment of DDX41, along with dysregulated periostin expression, likely contributes to this patient's multisystem disorder.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Genetics
Human Genetics 生物-遗传学
CiteScore
10.80
自引率
3.80%
发文量
94
审稿时长
1 months
期刊介绍: Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology. Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted. The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信