{"title":"改进因果基因鉴定的多指标整合方法","authors":"Austin King, Chong Wu","doi":"10.1002/gepi.22601","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Transcriptome-wide association studies (TWAS) have been widely used to identify thousands of likely causal genes for diseases and complex traits using predicted expression models. However, most existing TWAS methods rely on gene expression alone and overlook other regulatory mechanisms of gene expression, including DNA methylation and splicing, that contribute to the genetic basis of these complex traits and diseases. Here we introduce a multi-omics method that integrates gene expression, DNA methylation, and splicing data to improve the identification of associated genes with our traits of interest. Through simulations and by analyzing genome-wide association study (GWAS) summary statistics for 24 complex traits, we show that our integrated method, which leverages these complementary omics biomarkers, achieves higher statistical power, and improves the accuracy of likely causal gene identification in blood tissues over individual omics methods. Finally, we apply our integrated model to a lung cancer GWAS data set, demonstrating the integrated models improved identification of prioritized genes for lung cancer risk.</p>\n </div>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative Multi-Omics Approach for Improving Causal Gene Identification\",\"authors\":\"Austin King, Chong Wu\",\"doi\":\"10.1002/gepi.22601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Transcriptome-wide association studies (TWAS) have been widely used to identify thousands of likely causal genes for diseases and complex traits using predicted expression models. However, most existing TWAS methods rely on gene expression alone and overlook other regulatory mechanisms of gene expression, including DNA methylation and splicing, that contribute to the genetic basis of these complex traits and diseases. Here we introduce a multi-omics method that integrates gene expression, DNA methylation, and splicing data to improve the identification of associated genes with our traits of interest. Through simulations and by analyzing genome-wide association study (GWAS) summary statistics for 24 complex traits, we show that our integrated method, which leverages these complementary omics biomarkers, achieves higher statistical power, and improves the accuracy of likely causal gene identification in blood tissues over individual omics methods. Finally, we apply our integrated model to a lung cancer GWAS data set, demonstrating the integrated models improved identification of prioritized genes for lung cancer risk.</p>\\n </div>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22601\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22601","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Integrative Multi-Omics Approach for Improving Causal Gene Identification
Transcriptome-wide association studies (TWAS) have been widely used to identify thousands of likely causal genes for diseases and complex traits using predicted expression models. However, most existing TWAS methods rely on gene expression alone and overlook other regulatory mechanisms of gene expression, including DNA methylation and splicing, that contribute to the genetic basis of these complex traits and diseases. Here we introduce a multi-omics method that integrates gene expression, DNA methylation, and splicing data to improve the identification of associated genes with our traits of interest. Through simulations and by analyzing genome-wide association study (GWAS) summary statistics for 24 complex traits, we show that our integrated method, which leverages these complementary omics biomarkers, achieves higher statistical power, and improves the accuracy of likely causal gene identification in blood tissues over individual omics methods. Finally, we apply our integrated model to a lung cancer GWAS data set, demonstrating the integrated models improved identification of prioritized genes for lung cancer risk.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.