{"title":"利用双变量孟德尔随机化估算疾病进展性状的因果效应","authors":"Siyang Cai, Frank Dudbridge","doi":"10.1002/gepi.22600","DOIUrl":null,"url":null,"abstract":"<p>Genome-wide association studies (GWAS) have provided large numbers of genetic markers that can be used as instrumental variables in a Mendelian Randomisation (MR) analysis to assess the causal effect of a risk factor on an outcome. An extension of MR analysis, multivariable MR, has been proposed to handle multiple risk factors. However, adjusting or stratifying the outcome on a variable that is associated with it may induce collider bias. For an outcome that represents progression of a disease, conditioning by selecting only the cases may cause a biased MR estimation of the causal effect of the risk factor of interest on the progression outcome. Recently, we developed instrument effect regression and corrected weighted least squares (CWLS) to adjust for collider bias in observational associations. In this paper, we highlight the importance of adjusting for collider bias in MR with a risk factor of interest and disease progression as the outcome. A generalised version of the instrument effect regression and CWLS adjustment is proposed based on a multivariable MR model. We highlight the assumptions required for this approach and demonstrate its utility for bias reduction. We give an illustrative application to the effect of smoking initiation and smoking cessation on Crohn's disease prognosis, finding no evidence to support a causal effect.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22600","citationCount":"0","resultStr":"{\"title\":\"Estimating Causal Effects on a Disease Progression Trait Using Bivariate Mendelian Randomisation\",\"authors\":\"Siyang Cai, Frank Dudbridge\",\"doi\":\"10.1002/gepi.22600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Genome-wide association studies (GWAS) have provided large numbers of genetic markers that can be used as instrumental variables in a Mendelian Randomisation (MR) analysis to assess the causal effect of a risk factor on an outcome. An extension of MR analysis, multivariable MR, has been proposed to handle multiple risk factors. However, adjusting or stratifying the outcome on a variable that is associated with it may induce collider bias. For an outcome that represents progression of a disease, conditioning by selecting only the cases may cause a biased MR estimation of the causal effect of the risk factor of interest on the progression outcome. Recently, we developed instrument effect regression and corrected weighted least squares (CWLS) to adjust for collider bias in observational associations. In this paper, we highlight the importance of adjusting for collider bias in MR with a risk factor of interest and disease progression as the outcome. A generalised version of the instrument effect regression and CWLS adjustment is proposed based on a multivariable MR model. We highlight the assumptions required for this approach and demonstrate its utility for bias reduction. We give an illustrative application to the effect of smoking initiation and smoking cessation on Crohn's disease prognosis, finding no evidence to support a causal effect.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22600\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22600\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22600","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Estimating Causal Effects on a Disease Progression Trait Using Bivariate Mendelian Randomisation
Genome-wide association studies (GWAS) have provided large numbers of genetic markers that can be used as instrumental variables in a Mendelian Randomisation (MR) analysis to assess the causal effect of a risk factor on an outcome. An extension of MR analysis, multivariable MR, has been proposed to handle multiple risk factors. However, adjusting or stratifying the outcome on a variable that is associated with it may induce collider bias. For an outcome that represents progression of a disease, conditioning by selecting only the cases may cause a biased MR estimation of the causal effect of the risk factor of interest on the progression outcome. Recently, we developed instrument effect regression and corrected weighted least squares (CWLS) to adjust for collider bias in observational associations. In this paper, we highlight the importance of adjusting for collider bias in MR with a risk factor of interest and disease progression as the outcome. A generalised version of the instrument effect regression and CWLS adjustment is proposed based on a multivariable MR model. We highlight the assumptions required for this approach and demonstrate its utility for bias reduction. We give an illustrative application to the effect of smoking initiation and smoking cessation on Crohn's disease prognosis, finding no evidence to support a causal effect.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.