Di Wang , Xiaohao Zhang , Zhenqian Huang , Yunzi Li , Xinyi Wang , Jia Wang , Ying Zhao , Qiushi Lv , Min Wu , Mingming Zha , Kang Yuan , Wusheng Zhu , Gelin Xu , Yi Xie
{"title":"θ-脉冲经颅磁刺激可减轻小鼠慢性缺血性脱髓鞘和血管性认知障碍。","authors":"Di Wang , Xiaohao Zhang , Zhenqian Huang , Yunzi Li , Xinyi Wang , Jia Wang , Ying Zhao , Qiushi Lv , Min Wu , Mingming Zha , Kang Yuan , Wusheng Zhu , Gelin Xu , Yi Xie","doi":"10.1016/j.expneurol.2024.115022","DOIUrl":null,"url":null,"abstract":"<div><div>Vascular cognitive impairment and dementia (VCID) is mainly caused by chronic cerebral hypoperfusion and subsequent white matter lesions. Noninvasive transcranial magnetic stimulation has been utilized in treating various neurological disorders. However, the function of theta-burst transcranial magnetic stimulation on VCID remains to be defined. We utilized 4-week bilateral carotid artery stenosis model of male mice to mimic VCID. Intermittent theta-burst stimulation (iTBS) or consecutive theta-burst stimulation (cTBS) was administered for 14 consecutive days. Through luxol fast blue staining, electron microscopy and immunofluorescence, we found that iTBS, not cTBS, significantly improved demyelination, axonal damage and β-amyloid deposition, without affecting cerebral blood flow in VCID mice. At cellular levels, iTBS rescued the loss of mature oligodendrocytes, promoted precursor cell differentiation, and inhibited pro-inflammatory activation of astrocytes and microglia. Notably, iTBS attenuated cognitive deterioration in both short-term retention and long-term spatial memory of VCID mice as indicated by serial neurobehavioral tests. To explore the molecular involvement of iTBS, mRNA sequencing was carried out. By real-time PCR and combined RNA fluorescence in situ hybridization with immunofluorescence, iTBS was confirmed to increase <em>Rxrg</em> expression specifically in mature oligodendrocytes. Collectively, iTBS could ameliorate vascular cognitive dysfunction, probably via mitigating white matter lesions and neuroinflammation in the corpus callosum. <em>Rxrg</em> signaling in mature oligodendrocytes, which was increased by iTBS, might be a potential target for VCID treatment.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"383 ","pages":"Article 115022"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theta-burst transcranial magnetic stimulation attenuates chronic ischemic demyelination and vascular cognitive impairment in mice\",\"authors\":\"Di Wang , Xiaohao Zhang , Zhenqian Huang , Yunzi Li , Xinyi Wang , Jia Wang , Ying Zhao , Qiushi Lv , Min Wu , Mingming Zha , Kang Yuan , Wusheng Zhu , Gelin Xu , Yi Xie\",\"doi\":\"10.1016/j.expneurol.2024.115022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vascular cognitive impairment and dementia (VCID) is mainly caused by chronic cerebral hypoperfusion and subsequent white matter lesions. Noninvasive transcranial magnetic stimulation has been utilized in treating various neurological disorders. However, the function of theta-burst transcranial magnetic stimulation on VCID remains to be defined. We utilized 4-week bilateral carotid artery stenosis model of male mice to mimic VCID. Intermittent theta-burst stimulation (iTBS) or consecutive theta-burst stimulation (cTBS) was administered for 14 consecutive days. Through luxol fast blue staining, electron microscopy and immunofluorescence, we found that iTBS, not cTBS, significantly improved demyelination, axonal damage and β-amyloid deposition, without affecting cerebral blood flow in VCID mice. At cellular levels, iTBS rescued the loss of mature oligodendrocytes, promoted precursor cell differentiation, and inhibited pro-inflammatory activation of astrocytes and microglia. Notably, iTBS attenuated cognitive deterioration in both short-term retention and long-term spatial memory of VCID mice as indicated by serial neurobehavioral tests. To explore the molecular involvement of iTBS, mRNA sequencing was carried out. By real-time PCR and combined RNA fluorescence in situ hybridization with immunofluorescence, iTBS was confirmed to increase <em>Rxrg</em> expression specifically in mature oligodendrocytes. Collectively, iTBS could ameliorate vascular cognitive dysfunction, probably via mitigating white matter lesions and neuroinflammation in the corpus callosum. <em>Rxrg</em> signaling in mature oligodendrocytes, which was increased by iTBS, might be a potential target for VCID treatment.</div></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":\"383 \",\"pages\":\"Article 115022\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488624003480\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624003480","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Theta-burst transcranial magnetic stimulation attenuates chronic ischemic demyelination and vascular cognitive impairment in mice
Vascular cognitive impairment and dementia (VCID) is mainly caused by chronic cerebral hypoperfusion and subsequent white matter lesions. Noninvasive transcranial magnetic stimulation has been utilized in treating various neurological disorders. However, the function of theta-burst transcranial magnetic stimulation on VCID remains to be defined. We utilized 4-week bilateral carotid artery stenosis model of male mice to mimic VCID. Intermittent theta-burst stimulation (iTBS) or consecutive theta-burst stimulation (cTBS) was administered for 14 consecutive days. Through luxol fast blue staining, electron microscopy and immunofluorescence, we found that iTBS, not cTBS, significantly improved demyelination, axonal damage and β-amyloid deposition, without affecting cerebral blood flow in VCID mice. At cellular levels, iTBS rescued the loss of mature oligodendrocytes, promoted precursor cell differentiation, and inhibited pro-inflammatory activation of astrocytes and microglia. Notably, iTBS attenuated cognitive deterioration in both short-term retention and long-term spatial memory of VCID mice as indicated by serial neurobehavioral tests. To explore the molecular involvement of iTBS, mRNA sequencing was carried out. By real-time PCR and combined RNA fluorescence in situ hybridization with immunofluorescence, iTBS was confirmed to increase Rxrg expression specifically in mature oligodendrocytes. Collectively, iTBS could ameliorate vascular cognitive dysfunction, probably via mitigating white matter lesions and neuroinflammation in the corpus callosum. Rxrg signaling in mature oligodendrocytes, which was increased by iTBS, might be a potential target for VCID treatment.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.