{"title":"MK-801 暴露诱导小鼠前额叶皮层中 Grin2a 的翻译效率提高和 mRNA 过度乙酰化。","authors":"Liting Xue, Jialu Zhao, Xu Liu, Tian Zhao, Ying Zhang, Haihong Ye","doi":"10.1080/15592294.2024.2417158","DOIUrl":null,"url":null,"abstract":"<p><p>Acute exposure to MK-801, the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, induces schizophrenia-like behavioural changes in juvenile male mice. However, the effects of acute MK-801 exposure on brain gene expression at the translation level remain unclear. Here, we conducted ribosome profiling analysis on the prefrontal cortex (PFC) of acute MK-801-exposed juvenile male mice. We found 357 differentially translated genes, with the <i>N</i><sup>4</sup>-acetylcytidine (ac<sup>4</sup>C) consensus motif enriched in the transcripts with increased translation efficiency. Acetylated RNA immunoprecipitation sequencing revealed 148 differentially acetylated peaks, of which 121 were hyperacetylated, and 27 were hypoacetylated. Genes harbouring these peaks were enriched in pathways related to axon guidance, Hedgehog signalling pathway, neuron differentiation, and memory. <i>Grin2a</i> encodes an NMDA receptor subunit NMDAR2A, and its human orthologue is a strong susceptibility gene for schizophrenia. <i>Grin2a</i> mRNA was hyperacetylated and exhibited significantly increased translation efficiency. NMDAR2A protein level was increased in MK-801-exposed PFC. Pretreatment of Remodelin, an inhibitor of <i>N</i>-acetyltransferase 10, returned the NMDAR2A protein levels to normal and partially reversed schizophrenia-like behaviours of MK-801-exposed mice, shedding light on the possible role of mRNA acetylation in the aetiology of schizophrenia.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520555/pdf/","citationCount":"0","resultStr":"{\"title\":\"MK-801-exposure induces increased translation efficiency and mRNA hyperacetylation of <i>Grin2a</i> in the mouse prefrontal cortex.\",\"authors\":\"Liting Xue, Jialu Zhao, Xu Liu, Tian Zhao, Ying Zhang, Haihong Ye\",\"doi\":\"10.1080/15592294.2024.2417158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute exposure to MK-801, the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, induces schizophrenia-like behavioural changes in juvenile male mice. However, the effects of acute MK-801 exposure on brain gene expression at the translation level remain unclear. Here, we conducted ribosome profiling analysis on the prefrontal cortex (PFC) of acute MK-801-exposed juvenile male mice. We found 357 differentially translated genes, with the <i>N</i><sup>4</sup>-acetylcytidine (ac<sup>4</sup>C) consensus motif enriched in the transcripts with increased translation efficiency. Acetylated RNA immunoprecipitation sequencing revealed 148 differentially acetylated peaks, of which 121 were hyperacetylated, and 27 were hypoacetylated. Genes harbouring these peaks were enriched in pathways related to axon guidance, Hedgehog signalling pathway, neuron differentiation, and memory. <i>Grin2a</i> encodes an NMDA receptor subunit NMDAR2A, and its human orthologue is a strong susceptibility gene for schizophrenia. <i>Grin2a</i> mRNA was hyperacetylated and exhibited significantly increased translation efficiency. NMDAR2A protein level was increased in MK-801-exposed PFC. Pretreatment of Remodelin, an inhibitor of <i>N</i>-acetyltransferase 10, returned the NMDAR2A protein levels to normal and partially reversed schizophrenia-like behaviours of MK-801-exposed mice, shedding light on the possible role of mRNA acetylation in the aetiology of schizophrenia.</p>\",\"PeriodicalId\":11767,\"journal\":{\"name\":\"Epigenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520555/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592294.2024.2417158\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2024.2417158","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
MK-801-exposure induces increased translation efficiency and mRNA hyperacetylation of Grin2a in the mouse prefrontal cortex.
Acute exposure to MK-801, the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, induces schizophrenia-like behavioural changes in juvenile male mice. However, the effects of acute MK-801 exposure on brain gene expression at the translation level remain unclear. Here, we conducted ribosome profiling analysis on the prefrontal cortex (PFC) of acute MK-801-exposed juvenile male mice. We found 357 differentially translated genes, with the N4-acetylcytidine (ac4C) consensus motif enriched in the transcripts with increased translation efficiency. Acetylated RNA immunoprecipitation sequencing revealed 148 differentially acetylated peaks, of which 121 were hyperacetylated, and 27 were hypoacetylated. Genes harbouring these peaks were enriched in pathways related to axon guidance, Hedgehog signalling pathway, neuron differentiation, and memory. Grin2a encodes an NMDA receptor subunit NMDAR2A, and its human orthologue is a strong susceptibility gene for schizophrenia. Grin2a mRNA was hyperacetylated and exhibited significantly increased translation efficiency. NMDAR2A protein level was increased in MK-801-exposed PFC. Pretreatment of Remodelin, an inhibitor of N-acetyltransferase 10, returned the NMDAR2A protein levels to normal and partially reversed schizophrenia-like behaviours of MK-801-exposed mice, shedding light on the possible role of mRNA acetylation in the aetiology of schizophrenia.
期刊介绍:
Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed.
Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to):
DNA methylation
Nucleosome positioning and modification
Gene silencing
Imprinting
Nuclear reprogramming
Chromatin remodeling
Non-coding RNA
Non-histone chromosomal elements
Dosage compensation
Nuclear organization
Epigenetic therapy and diagnostics
Nutrition and environmental epigenetics
Cancer epigenetics
Neuroepigenetics