Seung-Ah Lee, Subin Kim, Seog-Young Kim, Jong Yoen Park, Hye Seung Jung, Sung Soo Chung, Kyong Soo Park
{"title":"利用四种可溶性因子在体内将内源性骨髓衍生细胞分化为胰岛素分泌细胞","authors":"Seung-Ah Lee, Subin Kim, Seog-Young Kim, Jong Yoen Park, Hye Seung Jung, Sung Soo Chung, Kyong Soo Park","doi":"10.4093/dmj.2024.0174","DOIUrl":null,"url":null,"abstract":"<p><p>Four soluble factors-putrescine, glucosamine, nicotinamide, and signal transducer and activator of transcription 3 (STAT3) inhibitor BP-1-102-were shown to differentiate bone marrow mononucleated cells (BMNCs) into functional insulin-producing cells (IPCs) in vitro. Transplantation of these IPCs improved hyperglycemia in diabetic mice. However, the role of endogenous BMNC regeneration in this effect was unclear. This study aimed to evaluate the effect of these factors on in vivo BMNC differentiation into IPCs in diabetic mice. Mice were orally administered the factors for 5 days, twice at 2-week intervals, and monitored for 45-55 days. Glucose tolerance, glucose-stimulated insulin secretion, and pancreatic insulin content were measured. Chimeric mice harboring BMNCs from insulin promoter luciferase/green fluorescent protein (GFP) transgenic mice were used to track endogenous BMNC fate. These factors lowered blood glucose levels, improved glucose tolerance, and enhanced insulin secretion. Immunostaining confirmed IPCs in the pancreas, showing the potential of these factors to induce β-cell regeneration and improve diabetes treatment.</p>","PeriodicalId":11153,"journal":{"name":"Diabetes & Metabolism Journal","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vivo Differentiation of Endogenous Bone Marrow-Derived Cells into Insulin-Producing Cells Using Four Soluble Factors.\",\"authors\":\"Seung-Ah Lee, Subin Kim, Seog-Young Kim, Jong Yoen Park, Hye Seung Jung, Sung Soo Chung, Kyong Soo Park\",\"doi\":\"10.4093/dmj.2024.0174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Four soluble factors-putrescine, glucosamine, nicotinamide, and signal transducer and activator of transcription 3 (STAT3) inhibitor BP-1-102-were shown to differentiate bone marrow mononucleated cells (BMNCs) into functional insulin-producing cells (IPCs) in vitro. Transplantation of these IPCs improved hyperglycemia in diabetic mice. However, the role of endogenous BMNC regeneration in this effect was unclear. This study aimed to evaluate the effect of these factors on in vivo BMNC differentiation into IPCs in diabetic mice. Mice were orally administered the factors for 5 days, twice at 2-week intervals, and monitored for 45-55 days. Glucose tolerance, glucose-stimulated insulin secretion, and pancreatic insulin content were measured. Chimeric mice harboring BMNCs from insulin promoter luciferase/green fluorescent protein (GFP) transgenic mice were used to track endogenous BMNC fate. These factors lowered blood glucose levels, improved glucose tolerance, and enhanced insulin secretion. Immunostaining confirmed IPCs in the pancreas, showing the potential of these factors to induce β-cell regeneration and improve diabetes treatment.</p>\",\"PeriodicalId\":11153,\"journal\":{\"name\":\"Diabetes & Metabolism Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes & Metabolism Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4093/dmj.2024.0174\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Metabolism Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4093/dmj.2024.0174","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
In Vivo Differentiation of Endogenous Bone Marrow-Derived Cells into Insulin-Producing Cells Using Four Soluble Factors.
Four soluble factors-putrescine, glucosamine, nicotinamide, and signal transducer and activator of transcription 3 (STAT3) inhibitor BP-1-102-were shown to differentiate bone marrow mononucleated cells (BMNCs) into functional insulin-producing cells (IPCs) in vitro. Transplantation of these IPCs improved hyperglycemia in diabetic mice. However, the role of endogenous BMNC regeneration in this effect was unclear. This study aimed to evaluate the effect of these factors on in vivo BMNC differentiation into IPCs in diabetic mice. Mice were orally administered the factors for 5 days, twice at 2-week intervals, and monitored for 45-55 days. Glucose tolerance, glucose-stimulated insulin secretion, and pancreatic insulin content were measured. Chimeric mice harboring BMNCs from insulin promoter luciferase/green fluorescent protein (GFP) transgenic mice were used to track endogenous BMNC fate. These factors lowered blood glucose levels, improved glucose tolerance, and enhanced insulin secretion. Immunostaining confirmed IPCs in the pancreas, showing the potential of these factors to induce β-cell regeneration and improve diabetes treatment.
期刊介绍:
The aims of the Diabetes & Metabolism Journal are to contribute to the cure of and education about diabetes mellitus, and the advancement of diabetology through the sharing of scientific information on the latest developments in diabetology among members of the Korean Diabetes Association and other international societies.
The Journal publishes articles on basic and clinical studies, focusing on areas such as metabolism, epidemiology, pathogenesis, complications, and treatments relevant to diabetes mellitus. It also publishes articles covering obesity and cardiovascular disease. Articles on translational research and timely issues including ubiquitous care or new technology in the management of diabetes and metabolic disorders are welcome. In addition, genome research, meta-analysis, and randomized controlled studies are welcome for publication.
The editorial board invites articles from international research or clinical study groups. Publication is determined by the editors and peer reviewers, who are experts in their specific fields of diabetology.