Chin-Feng Liu, Wen-Yu Chao, Tsung-Wei Shih, Chun-Lin Lee, Tzu-Ming Pan
{"title":"在卵清蛋白诱导的过敏性皮肤动物模型中,副卡氏乳杆菌通过 FOXP3 表达促进调节性 T 细胞成熟和 Th1/Th2 平衡","authors":"Chin-Feng Liu, Wen-Yu Chao, Tsung-Wei Shih, Chun-Lin Lee, Tzu-Ming Pan","doi":"10.3390/cimb46100636","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic allergic skin conditions, including atopic dermatitis (AD), are characterized by pruritus, erythema, xerosis, desquamation, and inflammation, significantly impacting quality of life. Long-term steroid use, while common in treatment, carries the risk of adverse effects. Previous studies have demonstrated the potential of <i>Lactobacillus paracasei</i> subsp. <i>paracasei</i> NTU 101 (NTU 101) in alleviating AD symptoms from a preventive perspective. This study, however, focuses on exploring NTU 101's therapeutic potential by investigating its effects on regulatory T cell (Treg) maturation and Th1/Th2 balance. The results revealed that NTU 101 administration effectively reduced serum IgE levels and inflammatory cell infiltration in the skin, leading to a significant improvement in both epidermal and dermal thickness in the AD model. Additionally, NTU 101 modulated the immune response by increasing the proportion of CD4+/IL-4+ (Th2) cells in the spleen and concurrently enhancing FOXP3 expression in CD4+/CD25+ cells, which is critical for Treg cell development. This immune modulation was further associated with a rebalancing of the Th1/Th2 ratio, achieved by increasing the proportion of CD4+/IFN-γ+ (Th1) cells. Moreover, NTU 101 influenced the proportion of CD4+IL-17+ (Th17) cells, thereby supporting neutrophil maturation and promoting allergen clearance, ultimately mitigating AD symptoms. These findings underscore the potential of NTU 101 not only in managing AD symptoms but also in modulating key immune pathways involved in the pathogenesis of the disease, offering a promising alternative or adjunct to conventional steroid therapies.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505879/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Enhancement of Regulatory T Cell Maturation and Th1/Th2 Balance through FOXP3 Expression by <i>Lactobacillus paracasei</i> in an Ovalbumin-Induced Allergic Skin Animal Model.\",\"authors\":\"Chin-Feng Liu, Wen-Yu Chao, Tsung-Wei Shih, Chun-Lin Lee, Tzu-Ming Pan\",\"doi\":\"10.3390/cimb46100636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic allergic skin conditions, including atopic dermatitis (AD), are characterized by pruritus, erythema, xerosis, desquamation, and inflammation, significantly impacting quality of life. Long-term steroid use, while common in treatment, carries the risk of adverse effects. Previous studies have demonstrated the potential of <i>Lactobacillus paracasei</i> subsp. <i>paracasei</i> NTU 101 (NTU 101) in alleviating AD symptoms from a preventive perspective. This study, however, focuses on exploring NTU 101's therapeutic potential by investigating its effects on regulatory T cell (Treg) maturation and Th1/Th2 balance. The results revealed that NTU 101 administration effectively reduced serum IgE levels and inflammatory cell infiltration in the skin, leading to a significant improvement in both epidermal and dermal thickness in the AD model. Additionally, NTU 101 modulated the immune response by increasing the proportion of CD4+/IL-4+ (Th2) cells in the spleen and concurrently enhancing FOXP3 expression in CD4+/CD25+ cells, which is critical for Treg cell development. This immune modulation was further associated with a rebalancing of the Th1/Th2 ratio, achieved by increasing the proportion of CD4+/IFN-γ+ (Th1) cells. Moreover, NTU 101 influenced the proportion of CD4+IL-17+ (Th17) cells, thereby supporting neutrophil maturation and promoting allergen clearance, ultimately mitigating AD symptoms. These findings underscore the potential of NTU 101 not only in managing AD symptoms but also in modulating key immune pathways involved in the pathogenesis of the disease, offering a promising alternative or adjunct to conventional steroid therapies.</p>\",\"PeriodicalId\":10839,\"journal\":{\"name\":\"Current Issues in Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505879/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cimb46100636\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb46100636","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Enhancement of Regulatory T Cell Maturation and Th1/Th2 Balance through FOXP3 Expression by Lactobacillus paracasei in an Ovalbumin-Induced Allergic Skin Animal Model.
Chronic allergic skin conditions, including atopic dermatitis (AD), are characterized by pruritus, erythema, xerosis, desquamation, and inflammation, significantly impacting quality of life. Long-term steroid use, while common in treatment, carries the risk of adverse effects. Previous studies have demonstrated the potential of Lactobacillus paracasei subsp. paracasei NTU 101 (NTU 101) in alleviating AD symptoms from a preventive perspective. This study, however, focuses on exploring NTU 101's therapeutic potential by investigating its effects on regulatory T cell (Treg) maturation and Th1/Th2 balance. The results revealed that NTU 101 administration effectively reduced serum IgE levels and inflammatory cell infiltration in the skin, leading to a significant improvement in both epidermal and dermal thickness in the AD model. Additionally, NTU 101 modulated the immune response by increasing the proportion of CD4+/IL-4+ (Th2) cells in the spleen and concurrently enhancing FOXP3 expression in CD4+/CD25+ cells, which is critical for Treg cell development. This immune modulation was further associated with a rebalancing of the Th1/Th2 ratio, achieved by increasing the proportion of CD4+/IFN-γ+ (Th1) cells. Moreover, NTU 101 influenced the proportion of CD4+IL-17+ (Th17) cells, thereby supporting neutrophil maturation and promoting allergen clearance, ultimately mitigating AD symptoms. These findings underscore the potential of NTU 101 not only in managing AD symptoms but also in modulating key immune pathways involved in the pathogenesis of the disease, offering a promising alternative or adjunct to conventional steroid therapies.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.