作为血管内皮生长因子受体-2(VEGFR-2)抑制剂的 1,3,4-噻二唑衍生物的硅学筛选。

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Steven M Ewell, Hannah Burton, Bereket Mochona
{"title":"作为血管内皮生长因子受体-2(VEGFR-2)抑制剂的 1,3,4-噻二唑衍生物的硅学筛选。","authors":"Steven M Ewell, Hannah Burton, Bereket Mochona","doi":"10.3390/cimb46100666","DOIUrl":null,"url":null,"abstract":"<p><p>Angiogenesis plays a pivotal role in the growth, survival, and metastasis of solid tumors, with Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) being overexpressed in many human solid tumors, making it an appealing target for anti-cancer therapies. This study aimed to identify potential lead compounds with azole moiety exhibiting VEGFR-2 inhibitory effects. A ligand-based pharmacophore model was constructed using the X-ray crystallographic structure of VEGFR-2 complexed with tivozanib (PDB ID: 4ASE) to screen the ZINC15 database. Following virtual screening, six compounds demonstrated promising docking scores and drug-likeness comparable to tivozanib. These hits underwent detailed pharmacokinetic analysis to assess their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Furthermore, Density Functional Theory (DFT) analysis was employed to investigate the molecular orbital properties of the top hits from molecular docking. Molecular dynamics (MD) simulations were conducted to evaluate the conformational stability of the complexes over a 100 ns run. Results indicated that the compounds (ZINC8914312, ZINC8739578, ZINC8927502, and ZINC17138581) exhibited the most promising lead requirements for inhibiting VEGFR-2 and suppressing angiogenesis in cancer therapy. This integrated approach, combining pharmacophore modeling, molecular docking, ADMET studies, DFT analysis, and MD simulations, provides valuable insights into the identification of potential anti-cancer agents targeting VEGFR-2.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505934/pdf/","citationCount":"0","resultStr":"{\"title\":\"In Silico Screening of 1,3,4-Thiadiazole Derivatives as Inhibitors of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2).\",\"authors\":\"Steven M Ewell, Hannah Burton, Bereket Mochona\",\"doi\":\"10.3390/cimb46100666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Angiogenesis plays a pivotal role in the growth, survival, and metastasis of solid tumors, with Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) being overexpressed in many human solid tumors, making it an appealing target for anti-cancer therapies. This study aimed to identify potential lead compounds with azole moiety exhibiting VEGFR-2 inhibitory effects. A ligand-based pharmacophore model was constructed using the X-ray crystallographic structure of VEGFR-2 complexed with tivozanib (PDB ID: 4ASE) to screen the ZINC15 database. Following virtual screening, six compounds demonstrated promising docking scores and drug-likeness comparable to tivozanib. These hits underwent detailed pharmacokinetic analysis to assess their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Furthermore, Density Functional Theory (DFT) analysis was employed to investigate the molecular orbital properties of the top hits from molecular docking. Molecular dynamics (MD) simulations were conducted to evaluate the conformational stability of the complexes over a 100 ns run. Results indicated that the compounds (ZINC8914312, ZINC8739578, ZINC8927502, and ZINC17138581) exhibited the most promising lead requirements for inhibiting VEGFR-2 and suppressing angiogenesis in cancer therapy. This integrated approach, combining pharmacophore modeling, molecular docking, ADMET studies, DFT analysis, and MD simulations, provides valuable insights into the identification of potential anti-cancer agents targeting VEGFR-2.</p>\",\"PeriodicalId\":10839,\"journal\":{\"name\":\"Current Issues in Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505934/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cimb46100666\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb46100666","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

血管生成在实体瘤的生长、存活和转移中起着关键作用,血管内皮生长因子受体-2(VEGFR-2)在许多人类实体瘤中过度表达,使其成为抗癌疗法的一个有吸引力的靶点。本研究旨在发现具有 VEGFR-2 抑制作用的唑类潜在先导化合物。利用 VEGFR-2 与 tivozanib(PDB ID:4ASE)复合物的 X 射线晶体结构,构建了基于配体的药代动力学模型,对 ZINC15 数据库进行筛选。经过虚拟筛选,有六个化合物显示出良好的对接得分和与替伏扎尼相当的药物相似性。对这些化合物进行了详细的药代动力学分析,以评估它们的吸收、分布、代谢、排泄和毒性(ADMET)特性。此外,还采用了密度泛函理论(DFT)分析来研究分子对接中热门药物的分子轨道特性。还进行了分子动力学(MD)模拟,以评估复合物在 100 ns 运行期间的构象稳定性。结果表明,这些化合物(ZINC8914312、ZINC8739578、ZINC8927502 和 ZINC17138581)在癌症治疗中抑制血管内皮生长因子受体-2 和抑制血管生成方面表现出最有希望的先导要求。这种综合方法结合了药效学建模、分子对接、ADMET 研究、DFT 分析和 MD 模拟,为鉴定靶向 VEGFR-2 的潜在抗癌药物提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Silico Screening of 1,3,4-Thiadiazole Derivatives as Inhibitors of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2).

Angiogenesis plays a pivotal role in the growth, survival, and metastasis of solid tumors, with Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) being overexpressed in many human solid tumors, making it an appealing target for anti-cancer therapies. This study aimed to identify potential lead compounds with azole moiety exhibiting VEGFR-2 inhibitory effects. A ligand-based pharmacophore model was constructed using the X-ray crystallographic structure of VEGFR-2 complexed with tivozanib (PDB ID: 4ASE) to screen the ZINC15 database. Following virtual screening, six compounds demonstrated promising docking scores and drug-likeness comparable to tivozanib. These hits underwent detailed pharmacokinetic analysis to assess their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Furthermore, Density Functional Theory (DFT) analysis was employed to investigate the molecular orbital properties of the top hits from molecular docking. Molecular dynamics (MD) simulations were conducted to evaluate the conformational stability of the complexes over a 100 ns run. Results indicated that the compounds (ZINC8914312, ZINC8739578, ZINC8927502, and ZINC17138581) exhibited the most promising lead requirements for inhibiting VEGFR-2 and suppressing angiogenesis in cancer therapy. This integrated approach, combining pharmacophore modeling, molecular docking, ADMET studies, DFT analysis, and MD simulations, provides valuable insights into the identification of potential anti-cancer agents targeting VEGFR-2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Issues in Molecular Biology
Current Issues in Molecular Biology 生物-生化研究方法
CiteScore
2.90
自引率
3.20%
发文量
380
审稿时长
>12 weeks
期刊介绍: Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信