{"title":"利用从希尔伯特-黄变换和小波变换中提取的心电图特征与可解释视觉变换器和 CNN 模型的多模态融合,对心脏性猝死进行早期预测。","authors":"","doi":"10.1016/j.cmpb.2024.108455","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Sudden cardiac death (SCD) is a critical health issue characterized by the sudden failure of heart function, often caused by ventricular fibrillation (VF). Early prediction of SCD is crucial to enable timely interventions. However, current methods predict SCD only a few minutes before its onset, limiting intervention time. This study aims to develop a deep learning-based model for the early prediction of SCD using electrocardiography (ECG) signals.</div></div><div><h3>Methods:</h3><div>A multimodal explainable deep learning-based model is developed to analyze ECG signals at discrete intervals ranging from 5 to 30 min before SCD onset. The raw ECG signals, 2D scalograms generated through wavelet transform and 2D Hilbert spectrum generated through Hilbert–Huang transform (HHT) of ECG signals were applied to multiple deep learning algorithms. For raw ECG, a combination of 1D-convolutional neural networks (1D-CNN) and long short-term memory networks were employed for feature extraction and temporal pattern recognition. Besides, to extract and analyze features from scalograms and Hilbert spectra, Vision Transformer (ViT) and 2D-CNN have been used.</div></div><div><h3>Results:</h3><div>The developed model achieved high performance, with accuracy, precision, recall and F1-score of 98.81%, 98.83%, 98.81%, and 98.81% respectively to predict SCD onset 30 min in advance. Further, the proposed model can accurately classify SCD patients and normal controls with 100% accuracy. Thus, the proposed method outperforms the existing state-of-the-art methods.</div></div><div><h3>Conclusions:</h3><div>The developed model is capable of capturing diverse patterns on ECG signals recorded at multiple discrete time intervals (at 5-minute increments from 5 min to 30 min) prior to SCD onset that could discriminate for SCD. The proposed model significantly improves early SCD prediction, providing a valuable tool for continuous ECG monitoring in high-risk patients.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models\",\"authors\":\"\",\"doi\":\"10.1016/j.cmpb.2024.108455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective:</h3><div>Sudden cardiac death (SCD) is a critical health issue characterized by the sudden failure of heart function, often caused by ventricular fibrillation (VF). Early prediction of SCD is crucial to enable timely interventions. However, current methods predict SCD only a few minutes before its onset, limiting intervention time. This study aims to develop a deep learning-based model for the early prediction of SCD using electrocardiography (ECG) signals.</div></div><div><h3>Methods:</h3><div>A multimodal explainable deep learning-based model is developed to analyze ECG signals at discrete intervals ranging from 5 to 30 min before SCD onset. The raw ECG signals, 2D scalograms generated through wavelet transform and 2D Hilbert spectrum generated through Hilbert–Huang transform (HHT) of ECG signals were applied to multiple deep learning algorithms. For raw ECG, a combination of 1D-convolutional neural networks (1D-CNN) and long short-term memory networks were employed for feature extraction and temporal pattern recognition. Besides, to extract and analyze features from scalograms and Hilbert spectra, Vision Transformer (ViT) and 2D-CNN have been used.</div></div><div><h3>Results:</h3><div>The developed model achieved high performance, with accuracy, precision, recall and F1-score of 98.81%, 98.83%, 98.81%, and 98.81% respectively to predict SCD onset 30 min in advance. Further, the proposed model can accurately classify SCD patients and normal controls with 100% accuracy. Thus, the proposed method outperforms the existing state-of-the-art methods.</div></div><div><h3>Conclusions:</h3><div>The developed model is capable of capturing diverse patterns on ECG signals recorded at multiple discrete time intervals (at 5-minute increments from 5 min to 30 min) prior to SCD onset that could discriminate for SCD. The proposed model significantly improves early SCD prediction, providing a valuable tool for continuous ECG monitoring in high-risk patients.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260724004486\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004486","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Background and Objective:
Sudden cardiac death (SCD) is a critical health issue characterized by the sudden failure of heart function, often caused by ventricular fibrillation (VF). Early prediction of SCD is crucial to enable timely interventions. However, current methods predict SCD only a few minutes before its onset, limiting intervention time. This study aims to develop a deep learning-based model for the early prediction of SCD using electrocardiography (ECG) signals.
Methods:
A multimodal explainable deep learning-based model is developed to analyze ECG signals at discrete intervals ranging from 5 to 30 min before SCD onset. The raw ECG signals, 2D scalograms generated through wavelet transform and 2D Hilbert spectrum generated through Hilbert–Huang transform (HHT) of ECG signals were applied to multiple deep learning algorithms. For raw ECG, a combination of 1D-convolutional neural networks (1D-CNN) and long short-term memory networks were employed for feature extraction and temporal pattern recognition. Besides, to extract and analyze features from scalograms and Hilbert spectra, Vision Transformer (ViT) and 2D-CNN have been used.
Results:
The developed model achieved high performance, with accuracy, precision, recall and F1-score of 98.81%, 98.83%, 98.81%, and 98.81% respectively to predict SCD onset 30 min in advance. Further, the proposed model can accurately classify SCD patients and normal controls with 100% accuracy. Thus, the proposed method outperforms the existing state-of-the-art methods.
Conclusions:
The developed model is capable of capturing diverse patterns on ECG signals recorded at multiple discrete time intervals (at 5-minute increments from 5 min to 30 min) prior to SCD onset that could discriminate for SCD. The proposed model significantly improves early SCD prediction, providing a valuable tool for continuous ECG monitoring in high-risk patients.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.