Byungwook Kim, Jung Eun Kim, Soyoung Lee, Jaeseong Oh, Joo-Youn Cho, In-Jin Jang, SeungHwan Lee, Jae-Yong Chung, Seonghae Yoon
{"title":"埃武列汀的群体药代动力学和药效学模型:严重尿毒症会增加埃武列汀的生物利用度。","authors":"Byungwook Kim, Jung Eun Kim, Soyoung Lee, Jaeseong Oh, Joo-Youn Cho, In-Jin Jang, SeungHwan Lee, Jae-Yong Chung, Seonghae Yoon","doi":"10.1002/psp4.13263","DOIUrl":null,"url":null,"abstract":"<p><p>Uremia, a condition characterized by the retention of uremic toxins due to impaired renal function, may affect drug metabolism mediated by CYP3A4 enzymes. Evogliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor diabetic drug that is primarily metabolized by CYP3A4. This study aimed to construct a population pharmacokinetic (PK) and pharmacodynamic (PD) model for evogliptin in patients with varying degrees of renal disease, including end-stage renal disease on hemodialysis. A total of 688 evogliptin concentration and 598 DPP-4 activity data were available from 46 subjects. PK and PD data analyses were performed using a nonlinear mixed-effects model. The PK of evogliptin was optimally described by a two-compartment model with first-order absorption. The significant covariates in the final model included blood amylase and triglyceride on F1 (relative bioavailability). The simulation findings, together with previously reported PK data, provided evidence of a significant inhibition of the first-pass effect of evogliptin in patients with renal impairment. A direct link sigmoidal E<sub>max</sub> model was developed to describe the relationship between evogliptin concentration and DPP-4 inhibition. The PD model predicted significant inhibition of DPP-4 at maximum effect (E<sub>max</sub>: 88.9%) and a low EC<sub>50</sub> value (1.08 μg/L), indicating the high potency and efficacy of evogliptin. The developed PK/PD model accurately predicted exposure and the resulting DPP-4 activity of evogliptin in renal impairment. The findings of this study suggest that renal impairment and associated biochemical changes may impact the bioavailability of CYP3A4-metabolized drugs.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Population pharmacokinetic and pharmacodynamic model of evogliptin: Severe uremia increases the bioavailability of evogliptin.\",\"authors\":\"Byungwook Kim, Jung Eun Kim, Soyoung Lee, Jaeseong Oh, Joo-Youn Cho, In-Jin Jang, SeungHwan Lee, Jae-Yong Chung, Seonghae Yoon\",\"doi\":\"10.1002/psp4.13263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uremia, a condition characterized by the retention of uremic toxins due to impaired renal function, may affect drug metabolism mediated by CYP3A4 enzymes. Evogliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor diabetic drug that is primarily metabolized by CYP3A4. This study aimed to construct a population pharmacokinetic (PK) and pharmacodynamic (PD) model for evogliptin in patients with varying degrees of renal disease, including end-stage renal disease on hemodialysis. A total of 688 evogliptin concentration and 598 DPP-4 activity data were available from 46 subjects. PK and PD data analyses were performed using a nonlinear mixed-effects model. The PK of evogliptin was optimally described by a two-compartment model with first-order absorption. The significant covariates in the final model included blood amylase and triglyceride on F1 (relative bioavailability). The simulation findings, together with previously reported PK data, provided evidence of a significant inhibition of the first-pass effect of evogliptin in patients with renal impairment. A direct link sigmoidal E<sub>max</sub> model was developed to describe the relationship between evogliptin concentration and DPP-4 inhibition. The PD model predicted significant inhibition of DPP-4 at maximum effect (E<sub>max</sub>: 88.9%) and a low EC<sub>50</sub> value (1.08 μg/L), indicating the high potency and efficacy of evogliptin. The developed PK/PD model accurately predicted exposure and the resulting DPP-4 activity of evogliptin in renal impairment. The findings of this study suggest that renal impairment and associated biochemical changes may impact the bioavailability of CYP3A4-metabolized drugs.</p>\",\"PeriodicalId\":10774,\"journal\":{\"name\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/psp4.13263\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13263","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Population pharmacokinetic and pharmacodynamic model of evogliptin: Severe uremia increases the bioavailability of evogliptin.
Uremia, a condition characterized by the retention of uremic toxins due to impaired renal function, may affect drug metabolism mediated by CYP3A4 enzymes. Evogliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor diabetic drug that is primarily metabolized by CYP3A4. This study aimed to construct a population pharmacokinetic (PK) and pharmacodynamic (PD) model for evogliptin in patients with varying degrees of renal disease, including end-stage renal disease on hemodialysis. A total of 688 evogliptin concentration and 598 DPP-4 activity data were available from 46 subjects. PK and PD data analyses were performed using a nonlinear mixed-effects model. The PK of evogliptin was optimally described by a two-compartment model with first-order absorption. The significant covariates in the final model included blood amylase and triglyceride on F1 (relative bioavailability). The simulation findings, together with previously reported PK data, provided evidence of a significant inhibition of the first-pass effect of evogliptin in patients with renal impairment. A direct link sigmoidal Emax model was developed to describe the relationship between evogliptin concentration and DPP-4 inhibition. The PD model predicted significant inhibition of DPP-4 at maximum effect (Emax: 88.9%) and a low EC50 value (1.08 μg/L), indicating the high potency and efficacy of evogliptin. The developed PK/PD model accurately predicted exposure and the resulting DPP-4 activity of evogliptin in renal impairment. The findings of this study suggest that renal impairment and associated biochemical changes may impact the bioavailability of CYP3A4-metabolized drugs.