{"title":"用于植物性食品监测的超声波诊断技术的机遇与挑战:原理、机器系统和应用策略。","authors":"Jing Yan, Yingling Zhang, Zibin Jiao, Lifan Song, Zhijun Wang, Qing Zhang, Yaowen Liu, Wen Qin","doi":"10.1080/10408398.2024.2418891","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-based food consumption has increased substantially owing to its positive effects on human and global health. However, ensuring the quality and safety of plant-based foods remains a challenge. Diagnostic ultrasonic technology is widely used for rapid and nondestructive determination owing to its ability to penetrate optically opaque materials, strong directivity, rapid detection capabilities, low equipment costs, and ease of operation. This review provides a comprehensive understanding of diagnostic ultrasonic technology by summarizing the principles of food characterization, factors that influence detection accuracy and methods to mitigate their impact, composition of ultrasonic machine systems, and application of diagnostic ultrasound for monitoring plant-based foods. The detection principle of ultrasonic technology is based on empirical equations that establish a relationship between the ultrasonic and physicochemical indicators of food. To improve the detection accuracy, a compensation mechanism for the temperature and pressure should be established, measurement distances should be set in the far-field region, and liquid samples should be degassed. Furthermore, the sample platform design and the choice of detection mode depend on the nature of the food. Combining ultrasonic technology with machine learning techniques presents promising prospects for real-time process monitoring in the food and beverage industries.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-20"},"PeriodicalIF":7.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opportunities and challenges of ultrasonic diagnostic techniques for plant-based food monitoring: principle, machine system, and application strategies.\",\"authors\":\"Jing Yan, Yingling Zhang, Zibin Jiao, Lifan Song, Zhijun Wang, Qing Zhang, Yaowen Liu, Wen Qin\",\"doi\":\"10.1080/10408398.2024.2418891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant-based food consumption has increased substantially owing to its positive effects on human and global health. However, ensuring the quality and safety of plant-based foods remains a challenge. Diagnostic ultrasonic technology is widely used for rapid and nondestructive determination owing to its ability to penetrate optically opaque materials, strong directivity, rapid detection capabilities, low equipment costs, and ease of operation. This review provides a comprehensive understanding of diagnostic ultrasonic technology by summarizing the principles of food characterization, factors that influence detection accuracy and methods to mitigate their impact, composition of ultrasonic machine systems, and application of diagnostic ultrasound for monitoring plant-based foods. The detection principle of ultrasonic technology is based on empirical equations that establish a relationship between the ultrasonic and physicochemical indicators of food. To improve the detection accuracy, a compensation mechanism for the temperature and pressure should be established, measurement distances should be set in the far-field region, and liquid samples should be degassed. Furthermore, the sample platform design and the choice of detection mode depend on the nature of the food. Combining ultrasonic technology with machine learning techniques presents promising prospects for real-time process monitoring in the food and beverage industries.</p>\",\"PeriodicalId\":10767,\"journal\":{\"name\":\"Critical reviews in food science and nutrition\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in food science and nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10408398.2024.2418891\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2024.2418891","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Opportunities and challenges of ultrasonic diagnostic techniques for plant-based food monitoring: principle, machine system, and application strategies.
Plant-based food consumption has increased substantially owing to its positive effects on human and global health. However, ensuring the quality and safety of plant-based foods remains a challenge. Diagnostic ultrasonic technology is widely used for rapid and nondestructive determination owing to its ability to penetrate optically opaque materials, strong directivity, rapid detection capabilities, low equipment costs, and ease of operation. This review provides a comprehensive understanding of diagnostic ultrasonic technology by summarizing the principles of food characterization, factors that influence detection accuracy and methods to mitigate their impact, composition of ultrasonic machine systems, and application of diagnostic ultrasound for monitoring plant-based foods. The detection principle of ultrasonic technology is based on empirical equations that establish a relationship between the ultrasonic and physicochemical indicators of food. To improve the detection accuracy, a compensation mechanism for the temperature and pressure should be established, measurement distances should be set in the far-field region, and liquid samples should be degassed. Furthermore, the sample platform design and the choice of detection mode depend on the nature of the food. Combining ultrasonic technology with machine learning techniques presents promising prospects for real-time process monitoring in the food and beverage industries.
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.