单细胞镶嵌整合和细胞状态转移的自动缩放自我关注机制

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zhiwei Rong, Jiali Song, Yipei Yu, Lan Mi, ManTang Qiu, Yuqin Song, Yan Hou
{"title":"单细胞镶嵌整合和细胞状态转移的自动缩放自我关注机制","authors":"Zhiwei Rong, Jiali Song, Yipei Yu, Lan Mi, ManTang Qiu, Yuqin Song, Yan Hou","doi":"10.1093/bib/bbae540","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of data from multiple modalities generated by single-cell omics technologies is crucial for accurately identifying cell states. One challenge in comprehending multi-omics data resides in mosaic integration, in which different data modalities are profiled in different subsets of cells, as it requires simultaneous batch effect removal and modality alignment. Here, we develop Multi-omics Mosaic Auto-scaling Attention Variational Inference (mmAAVI), a scalable deep generative model for single-cell mosaic integration. Leveraging auto-scaling self-attention mechanisms, mmAAVI can map arbitrary combinations of omics to the common embedding space. If existing well-annotated cell states, the model can perform semisupervised learning to utilize existing these annotations. We validated the performance of mmAAVI and five other commonly used methods on four benchmark datasets, which vary in cell numbers, omics types, and missing patterns. mmAAVI consistently demonstrated its superiority. We also validated mmAAVI's ability for cell state knowledge transfer, achieving balanced accuracies of 0.82 and 0.97 with less 1% labeled cells between batches with completely different omics. The full package is available at https://github.com/luyiyun/mmAAVI.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495875/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell mosaic integration and cell state transfer with auto-scaling self-attention mechanism.\",\"authors\":\"Zhiwei Rong, Jiali Song, Yipei Yu, Lan Mi, ManTang Qiu, Yuqin Song, Yan Hou\",\"doi\":\"10.1093/bib/bbae540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integration of data from multiple modalities generated by single-cell omics technologies is crucial for accurately identifying cell states. One challenge in comprehending multi-omics data resides in mosaic integration, in which different data modalities are profiled in different subsets of cells, as it requires simultaneous batch effect removal and modality alignment. Here, we develop Multi-omics Mosaic Auto-scaling Attention Variational Inference (mmAAVI), a scalable deep generative model for single-cell mosaic integration. Leveraging auto-scaling self-attention mechanisms, mmAAVI can map arbitrary combinations of omics to the common embedding space. If existing well-annotated cell states, the model can perform semisupervised learning to utilize existing these annotations. We validated the performance of mmAAVI and five other commonly used methods on four benchmark datasets, which vary in cell numbers, omics types, and missing patterns. mmAAVI consistently demonstrated its superiority. We also validated mmAAVI's ability for cell state knowledge transfer, achieving balanced accuracies of 0.82 and 0.97 with less 1% labeled cells between batches with completely different omics. The full package is available at https://github.com/luyiyun/mmAAVI.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae540\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae540","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

整合单细胞组学技术产生的多种模式数据对于准确识别细胞状态至关重要。理解多组学数据的一个挑战在于马赛克整合,其中不同的数据模式在不同的细胞子集中进行剖析,因为这需要同时去除批量效应和模式对齐。在这里,我们开发了多组学马赛克自标度注意力变异推理(mmAAVI),这是一种用于单细胞马赛克整合的可扩展深度生成模型。利用自动缩放自我注意机制,mmAAVI 可以将任意的 omics 组合映射到共同的嵌入空间。如果现有的细胞状态注释良好,该模型可以执行半监督学习,以利用现有的这些注释。我们在四个基准数据集上验证了 mmAAVI 和其他五种常用方法的性能,这些数据集在细胞数量、omics 类型和缺失模式方面各不相同。我们还验证了 mmAAVI 在细胞状态知识转移方面的能力,在具有完全不同的全息图像的批次之间,用不到 1% 的标记细胞实现了 0.82 和 0.97 的平衡精度。完整的软件包可从 https://github.com/luyiyun/mmAAVI 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-cell mosaic integration and cell state transfer with auto-scaling self-attention mechanism.

The integration of data from multiple modalities generated by single-cell omics technologies is crucial for accurately identifying cell states. One challenge in comprehending multi-omics data resides in mosaic integration, in which different data modalities are profiled in different subsets of cells, as it requires simultaneous batch effect removal and modality alignment. Here, we develop Multi-omics Mosaic Auto-scaling Attention Variational Inference (mmAAVI), a scalable deep generative model for single-cell mosaic integration. Leveraging auto-scaling self-attention mechanisms, mmAAVI can map arbitrary combinations of omics to the common embedding space. If existing well-annotated cell states, the model can perform semisupervised learning to utilize existing these annotations. We validated the performance of mmAAVI and five other commonly used methods on four benchmark datasets, which vary in cell numbers, omics types, and missing patterns. mmAAVI consistently demonstrated its superiority. We also validated mmAAVI's ability for cell state knowledge transfer, achieving balanced accuracies of 0.82 and 0.97 with less 1% labeled cells between batches with completely different omics. The full package is available at https://github.com/luyiyun/mmAAVI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信