DeepCheck:评估微生物基因组质量的多任务学习辅助工具。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Guo Wei, Nannan Wu, Kunyang Zhao, Sihai Yang, Long Wang, Yan Liu
{"title":"DeepCheck:评估微生物基因组质量的多任务学习辅助工具。","authors":"Guo Wei, Nannan Wu, Kunyang Zhao, Sihai Yang, Long Wang, Yan Liu","doi":"10.1093/bib/bbae539","DOIUrl":null,"url":null,"abstract":"<p><p>Metagenomic analyses facilitate the exploration of the microbial world, advancing our understanding of microbial roles in ecological and biological processes. A pivotal aspect of metagenomic analysis involves assessing the quality of metagenome-assembled genomes (MAGs), crucial for accurate biological insights. Current machine learning-based methods often treat completeness and contamination prediction as separate tasks, overlooking their inherent relationship and limiting models' generalization. In this study, we present DeepCheck, a multitasking deep learning framework for simultaneous prediction of MAG completeness and contamination. DeepCheck consistently outperforms existing tools in accuracy across various experimental settings and demonstrates comparable speed while maintaining high predictive accuracy even for new lineages. Additionally, we employ interpretable machine learning techniques to identify specific genes and pathways that drive the model's predictions, enabling independent investigation and assessment of these biological elements for deeper insights.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495869/pdf/","citationCount":"0","resultStr":"{\"title\":\"DeepCheck: multitask learning aids in assessing microbial genome quality.\",\"authors\":\"Guo Wei, Nannan Wu, Kunyang Zhao, Sihai Yang, Long Wang, Yan Liu\",\"doi\":\"10.1093/bib/bbae539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metagenomic analyses facilitate the exploration of the microbial world, advancing our understanding of microbial roles in ecological and biological processes. A pivotal aspect of metagenomic analysis involves assessing the quality of metagenome-assembled genomes (MAGs), crucial for accurate biological insights. Current machine learning-based methods often treat completeness and contamination prediction as separate tasks, overlooking their inherent relationship and limiting models' generalization. In this study, we present DeepCheck, a multitasking deep learning framework for simultaneous prediction of MAG completeness and contamination. DeepCheck consistently outperforms existing tools in accuracy across various experimental settings and demonstrates comparable speed while maintaining high predictive accuracy even for new lineages. Additionally, we employ interpretable machine learning techniques to identify specific genes and pathways that drive the model's predictions, enabling independent investigation and assessment of these biological elements for deeper insights.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495869/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae539\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae539","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

元基因组分析促进了对微生物世界的探索,加深了我们对微生物在生态和生物过程中作用的了解。元基因组分析的一个关键方面是评估元基因组组装基因组(MAG)的质量,这对准确了解生物学至关重要。目前基于机器学习的方法通常将完整性和污染预测视为独立的任务,忽略了它们之间的内在联系,限制了模型的泛化。在这项研究中,我们提出了一种多任务深度学习框架 DeepCheck,用于同时预测 MAG 的完整性和污染。在各种实验环境下,DeepCheck 的准确性始终优于现有工具,而且在保持较高预测准确性的同时,甚至对新品系的预测速度也相当快。此外,我们还采用了可解释的机器学习技术来识别驱动模型预测的特定基因和通路,从而能够对这些生物元素进行独立调查和评估,以获得更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepCheck: multitask learning aids in assessing microbial genome quality.

Metagenomic analyses facilitate the exploration of the microbial world, advancing our understanding of microbial roles in ecological and biological processes. A pivotal aspect of metagenomic analysis involves assessing the quality of metagenome-assembled genomes (MAGs), crucial for accurate biological insights. Current machine learning-based methods often treat completeness and contamination prediction as separate tasks, overlooking their inherent relationship and limiting models' generalization. In this study, we present DeepCheck, a multitasking deep learning framework for simultaneous prediction of MAG completeness and contamination. DeepCheck consistently outperforms existing tools in accuracy across various experimental settings and demonstrates comparable speed while maintaining high predictive accuracy even for new lineages. Additionally, we employ interpretable machine learning techniques to identify specific genes and pathways that drive the model's predictions, enabling independent investigation and assessment of these biological elements for deeper insights.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信