{"title":"寻找信息丰富的空间关联路径的稳健统计方法。","authors":"Leqi Tian, Jiashun Xiao, Tianwei Yu","doi":"10.1093/bib/bbae543","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial transcriptomics offers deep insights into cellular functional localization and communication by mapping gene expression to spatial locations. Traditional approaches that focus on selecting spatially variable genes often overlook the complexity of biological pathways and the interactions among genes. Here, we introduce a novel framework that shifts the focus towards directly identifying functional pathways associated with spatial variability by adapting the Brownian distance covariance test in an innovative manner to explore the heterogeneity of biological functions over space. Unlike most other methods, this statistical testing approach is free of gene selection and parameter selection and allows nonlinear and complex dependencies. It allows for a deeper understanding of how cells coordinate their activities across different spatial domains through biological pathways. By analyzing real human and mouse datasets, the method found significant pathways that were associated with spatial variation, as well as different pathway patterns among inner- and edge-cancer regions. This innovative framework offers a new perspective on analyzing spatial transcriptomic data, contributing to our understanding of tissue architecture and disease pathology. The implementation is publicly available at https://github.com/tianlq-prog/STpathway.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503753/pdf/","citationCount":"0","resultStr":"{\"title\":\"A robust statistical approach for finding informative spatially associated pathways.\",\"authors\":\"Leqi Tian, Jiashun Xiao, Tianwei Yu\",\"doi\":\"10.1093/bib/bbae543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatial transcriptomics offers deep insights into cellular functional localization and communication by mapping gene expression to spatial locations. Traditional approaches that focus on selecting spatially variable genes often overlook the complexity of biological pathways and the interactions among genes. Here, we introduce a novel framework that shifts the focus towards directly identifying functional pathways associated with spatial variability by adapting the Brownian distance covariance test in an innovative manner to explore the heterogeneity of biological functions over space. Unlike most other methods, this statistical testing approach is free of gene selection and parameter selection and allows nonlinear and complex dependencies. It allows for a deeper understanding of how cells coordinate their activities across different spatial domains through biological pathways. By analyzing real human and mouse datasets, the method found significant pathways that were associated with spatial variation, as well as different pathway patterns among inner- and edge-cancer regions. This innovative framework offers a new perspective on analyzing spatial transcriptomic data, contributing to our understanding of tissue architecture and disease pathology. The implementation is publicly available at https://github.com/tianlq-prog/STpathway.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503753/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae543\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae543","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A robust statistical approach for finding informative spatially associated pathways.
Spatial transcriptomics offers deep insights into cellular functional localization and communication by mapping gene expression to spatial locations. Traditional approaches that focus on selecting spatially variable genes often overlook the complexity of biological pathways and the interactions among genes. Here, we introduce a novel framework that shifts the focus towards directly identifying functional pathways associated with spatial variability by adapting the Brownian distance covariance test in an innovative manner to explore the heterogeneity of biological functions over space. Unlike most other methods, this statistical testing approach is free of gene selection and parameter selection and allows nonlinear and complex dependencies. It allows for a deeper understanding of how cells coordinate their activities across different spatial domains through biological pathways. By analyzing real human and mouse datasets, the method found significant pathways that were associated with spatial variation, as well as different pathway patterns among inner- and edge-cancer regions. This innovative framework offers a new perspective on analyzing spatial transcriptomic data, contributing to our understanding of tissue architecture and disease pathology. The implementation is publicly available at https://github.com/tianlq-prog/STpathway.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.