Nathalie Rohmann, Theresa Geese, Samantha Nestel, Kristina Schlicht, Corinna Geisler, Kathrin Türk, Fynn Brix, Julia Jensen-Kroll, Tobias Demetrowitsch, Corinna Bang, Andre Franke, Wolfgang Lieb, Dominik M Schulte, Karin Schwarz, Anne-Kathrin Ruß, Arunabh Sharma, Stefan Schreiber, Astrid Dempfle, Matthias Laudes
{"title":"代谢和生活方式因素加速了疾病的发生,并改变了炎症性非传染性疾病中的肠道微生物群。","authors":"Nathalie Rohmann, Theresa Geese, Samantha Nestel, Kristina Schlicht, Corinna Geisler, Kathrin Türk, Fynn Brix, Julia Jensen-Kroll, Tobias Demetrowitsch, Corinna Bang, Andre Franke, Wolfgang Lieb, Dominik M Schulte, Karin Schwarz, Anne-Kathrin Ruß, Arunabh Sharma, Stefan Schreiber, Astrid Dempfle, Matthias Laudes","doi":"10.1186/s12916-024-03709-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Biomedical and lifestyle factors in Western populations have significantly shifted in recent decades, influencing public health and contributing to the increasing prevalence of non-communicable diseases (NCDs) that share inflammation as common pathology.</p><p><strong>Methods: </strong>We investigated the relationship between these factors and 11 NCDs in the cross-sectional FoCus cohort (n = 1220), using logistic regression models. Associations with age-at-disease-onset were specifically analyzed for type 2 diabetes (T2D, low-grade chronic inflammation) and inflammatory bowel disease (IBD, high-grade chronic inflammation) in disease-specific cohorts (FoCus-T2D, n = 514; IBD-KC, n = 1110). Important factors for disease risk were identified using Cox-PH-regression models and time-to-event analysis. We further explored the interaction between identified risk factors and gut microbiome composition using linear models.</p><p><strong>Results: </strong>Lifestyle factors were clearly linked to disease phenotypes, particularly in T2D and IBD. Still, some factors affected only the age-at-onset, but not disease prevalence. High-quality nutrition significantly delayed onset for both IBD and T2D (IBD: HR = 0.81 [0.66; 0.98]; T2D: HR = 0.45 [0.28; 0.72]). Smoking accelerated T2D onset (HR = 1.82 [1.25; 2.65]) but delayed onset in ulcerative colitis (UC: HR = 0.47 [0.28; 0.79]). Higher microbiota diversity delayed IBD onset (Shannon: HR = 0.58 [0.49; 0.71]) but had no effect on T2D. The abundance of specific microbial genera was strongly associated with various biomedical and lifestyle factors in T2D and IBD. In unaffected controls, these effects were smaller or reversed, potentially indicating a greater susceptibility of the gut microbiome to negative influences in T2D and IBD.</p><p><strong>Conclusions: </strong>The dual insights into age-at-disease-onset and gut microbiota composition in disease emphasize the role of certain biomedical and lifestyle factors, e.g., nutrition quality, in disease prevention and management. Understanding these relationships provides a foundation for developing targeted strategies to mitigate the impact of metabolic and inflammatory diseases through lifestyle modifications and gut health management.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515311/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolic and lifestyle factors accelerate disease onset and alter gut microbiome in inflammatory non-communicable diseases.\",\"authors\":\"Nathalie Rohmann, Theresa Geese, Samantha Nestel, Kristina Schlicht, Corinna Geisler, Kathrin Türk, Fynn Brix, Julia Jensen-Kroll, Tobias Demetrowitsch, Corinna Bang, Andre Franke, Wolfgang Lieb, Dominik M Schulte, Karin Schwarz, Anne-Kathrin Ruß, Arunabh Sharma, Stefan Schreiber, Astrid Dempfle, Matthias Laudes\",\"doi\":\"10.1186/s12916-024-03709-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Biomedical and lifestyle factors in Western populations have significantly shifted in recent decades, influencing public health and contributing to the increasing prevalence of non-communicable diseases (NCDs) that share inflammation as common pathology.</p><p><strong>Methods: </strong>We investigated the relationship between these factors and 11 NCDs in the cross-sectional FoCus cohort (n = 1220), using logistic regression models. Associations with age-at-disease-onset were specifically analyzed for type 2 diabetes (T2D, low-grade chronic inflammation) and inflammatory bowel disease (IBD, high-grade chronic inflammation) in disease-specific cohorts (FoCus-T2D, n = 514; IBD-KC, n = 1110). Important factors for disease risk were identified using Cox-PH-regression models and time-to-event analysis. We further explored the interaction between identified risk factors and gut microbiome composition using linear models.</p><p><strong>Results: </strong>Lifestyle factors were clearly linked to disease phenotypes, particularly in T2D and IBD. Still, some factors affected only the age-at-onset, but not disease prevalence. High-quality nutrition significantly delayed onset for both IBD and T2D (IBD: HR = 0.81 [0.66; 0.98]; T2D: HR = 0.45 [0.28; 0.72]). Smoking accelerated T2D onset (HR = 1.82 [1.25; 2.65]) but delayed onset in ulcerative colitis (UC: HR = 0.47 [0.28; 0.79]). Higher microbiota diversity delayed IBD onset (Shannon: HR = 0.58 [0.49; 0.71]) but had no effect on T2D. The abundance of specific microbial genera was strongly associated with various biomedical and lifestyle factors in T2D and IBD. In unaffected controls, these effects were smaller or reversed, potentially indicating a greater susceptibility of the gut microbiome to negative influences in T2D and IBD.</p><p><strong>Conclusions: </strong>The dual insights into age-at-disease-onset and gut microbiota composition in disease emphasize the role of certain biomedical and lifestyle factors, e.g., nutrition quality, in disease prevention and management. Understanding these relationships provides a foundation for developing targeted strategies to mitigate the impact of metabolic and inflammatory diseases through lifestyle modifications and gut health management.</p>\",\"PeriodicalId\":9188,\"journal\":{\"name\":\"BMC Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12916-024-03709-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-024-03709-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Metabolic and lifestyle factors accelerate disease onset and alter gut microbiome in inflammatory non-communicable diseases.
Background: Biomedical and lifestyle factors in Western populations have significantly shifted in recent decades, influencing public health and contributing to the increasing prevalence of non-communicable diseases (NCDs) that share inflammation as common pathology.
Methods: We investigated the relationship between these factors and 11 NCDs in the cross-sectional FoCus cohort (n = 1220), using logistic regression models. Associations with age-at-disease-onset were specifically analyzed for type 2 diabetes (T2D, low-grade chronic inflammation) and inflammatory bowel disease (IBD, high-grade chronic inflammation) in disease-specific cohorts (FoCus-T2D, n = 514; IBD-KC, n = 1110). Important factors for disease risk were identified using Cox-PH-regression models and time-to-event analysis. We further explored the interaction between identified risk factors and gut microbiome composition using linear models.
Results: Lifestyle factors were clearly linked to disease phenotypes, particularly in T2D and IBD. Still, some factors affected only the age-at-onset, but not disease prevalence. High-quality nutrition significantly delayed onset for both IBD and T2D (IBD: HR = 0.81 [0.66; 0.98]; T2D: HR = 0.45 [0.28; 0.72]). Smoking accelerated T2D onset (HR = 1.82 [1.25; 2.65]) but delayed onset in ulcerative colitis (UC: HR = 0.47 [0.28; 0.79]). Higher microbiota diversity delayed IBD onset (Shannon: HR = 0.58 [0.49; 0.71]) but had no effect on T2D. The abundance of specific microbial genera was strongly associated with various biomedical and lifestyle factors in T2D and IBD. In unaffected controls, these effects were smaller or reversed, potentially indicating a greater susceptibility of the gut microbiome to negative influences in T2D and IBD.
Conclusions: The dual insights into age-at-disease-onset and gut microbiota composition in disease emphasize the role of certain biomedical and lifestyle factors, e.g., nutrition quality, in disease prevention and management. Understanding these relationships provides a foundation for developing targeted strategies to mitigate the impact of metabolic and inflammatory diseases through lifestyle modifications and gut health management.
期刊介绍:
BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.