Vesicomyidae 蛤蜊 Archivesica marissinica 和马尼拉蛤蜊 Ruditapes philippinarum 的赖氨酸乙酰化比较研究:冷渗环境中的适应机制。

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xue Kong, Wei Wang, Sunan Chen, Manzong Song, Ying Zhi, Yuefeng Cai, Haibin Zhang, Xin Shen
{"title":"Vesicomyidae 蛤蜊 Archivesica marissinica 和马尼拉蛤蜊 Ruditapes philippinarum 的赖氨酸乙酰化比较研究:冷渗环境中的适应机制。","authors":"Xue Kong, Wei Wang, Sunan Chen, Manzong Song, Ying Zhi, Yuefeng Cai, Haibin Zhang, Xin Shen","doi":"10.1186/s12864-024-10916-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The deep-sea cold seep zone is characterized by high pressure, low temperature, darkness, and oligotrophy. Vesicomyidae clams are the dominant species within this environment, often forming symbiotic relationships with chemosynthetic microbes. Understanding the mechanisms by which Vesicomyidae clams adapt to the cold seep environment is significant. Acetylation modification of lysine is known to play a crucial role in various metabolic processes. Consequently, investigating the role of lysine acetylation in the adaptation of Vesicomyidae clams to deep-sea environments is worthwhile. So, a comparative study of lysine acetylation in cold seep clam Archivesica marissinica and shallow water shellfish Ruditapes philippinarum was conducted.</p><p><strong>Results: </strong>A total of 539 acetylated proteins were identified with 1634 acetylation sites. Conservative motif enrichment analysis revealed that the motifs -KacR-, -KacT-, and -KacF- were the most conserved. Subsequent gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were conducted on significantly differentially expressed acetylated proteins. The GO enrichment analysis indicated that acetylated proteins are crucial in various biological processes, including cellular response to stimulation, and other cellular processes ( p < 0.05 and false discovery rate (FDR) < 0.25). The results of KEGG enrichment analysis indicated that acetylated proteins are involved in various cellular processes, including tight junction, motor proteins, gap junction, phagosome, cGMP-PKG signaling pathways, endocytosis, glycolysis/gluconeogenesis, among others (p < 0.05 and FDR < 0.25). Notably, a high abundance of lysine acetylation was observed in the glycolysis/glycogenesis pathways, and the acetylation of glyceraldehyde 3-phosphate dehydrogenase might facilitate ATP production. Subsequent investigation into acetylation modifications associated with deep-sea adaptation revealed the specific identification of key acetylated proteins. Among these, the adaptation of cold seep clam hemoglobin and heat shock protein to high hydrostatic pressure and low temperature might involve an increase in acetylation levels. Acetylation of arginine kinase might be related to ATP production and interaction with symbiotic bacteria. Myosin heavy chain (Ama01085) has the most acetylation sites and might improve the actomyosin system stability through acetylation. Further validation is required for the acetylation modification from Vesicomyidae clams.</p><p><strong>Conclusion: </strong>A novel comparative analysis was undertaken to investigate the acetylation of lysine in Vesicomyidae clams, yielding novel insights into the regulatory role of lysine acetylation in deep-sea organisms. The findings present many potential proteins for further exploration of acetylation functions in cold seep clams and other deep-sea mollusks.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514971/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative study of lysine acetylation in Vesicomyidae clam Archivesica marissinica and the manila clam Ruditapes philippinarum: adaptation mechanisms in cold seep environments.\",\"authors\":\"Xue Kong, Wei Wang, Sunan Chen, Manzong Song, Ying Zhi, Yuefeng Cai, Haibin Zhang, Xin Shen\",\"doi\":\"10.1186/s12864-024-10916-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The deep-sea cold seep zone is characterized by high pressure, low temperature, darkness, and oligotrophy. Vesicomyidae clams are the dominant species within this environment, often forming symbiotic relationships with chemosynthetic microbes. Understanding the mechanisms by which Vesicomyidae clams adapt to the cold seep environment is significant. Acetylation modification of lysine is known to play a crucial role in various metabolic processes. Consequently, investigating the role of lysine acetylation in the adaptation of Vesicomyidae clams to deep-sea environments is worthwhile. So, a comparative study of lysine acetylation in cold seep clam Archivesica marissinica and shallow water shellfish Ruditapes philippinarum was conducted.</p><p><strong>Results: </strong>A total of 539 acetylated proteins were identified with 1634 acetylation sites. Conservative motif enrichment analysis revealed that the motifs -KacR-, -KacT-, and -KacF- were the most conserved. Subsequent gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were conducted on significantly differentially expressed acetylated proteins. The GO enrichment analysis indicated that acetylated proteins are crucial in various biological processes, including cellular response to stimulation, and other cellular processes ( p < 0.05 and false discovery rate (FDR) < 0.25). The results of KEGG enrichment analysis indicated that acetylated proteins are involved in various cellular processes, including tight junction, motor proteins, gap junction, phagosome, cGMP-PKG signaling pathways, endocytosis, glycolysis/gluconeogenesis, among others (p < 0.05 and FDR < 0.25). Notably, a high abundance of lysine acetylation was observed in the glycolysis/glycogenesis pathways, and the acetylation of glyceraldehyde 3-phosphate dehydrogenase might facilitate ATP production. Subsequent investigation into acetylation modifications associated with deep-sea adaptation revealed the specific identification of key acetylated proteins. Among these, the adaptation of cold seep clam hemoglobin and heat shock protein to high hydrostatic pressure and low temperature might involve an increase in acetylation levels. Acetylation of arginine kinase might be related to ATP production and interaction with symbiotic bacteria. Myosin heavy chain (Ama01085) has the most acetylation sites and might improve the actomyosin system stability through acetylation. Further validation is required for the acetylation modification from Vesicomyidae clams.</p><p><strong>Conclusion: </strong>A novel comparative analysis was undertaken to investigate the acetylation of lysine in Vesicomyidae clams, yielding novel insights into the regulatory role of lysine acetylation in deep-sea organisms. The findings present many potential proteins for further exploration of acetylation functions in cold seep clams and other deep-sea mollusks.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-024-10916-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-10916-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:深海冷渗漏区的特点是高压、低温、黑暗和寡营养。鞘鳃科蛤是这一环境中的主要物种,通常与化合微生物形成共生关系。了解河蚌适应冷渗漏环境的机制意义重大。众所周知,赖氨酸的乙酰化修饰在各种代谢过程中起着至关重要的作用。因此,研究赖氨酸乙酰化在蜉蝣科蛤类适应深海环境中的作用是值得的。因此,我们对冷渗蛤 Archivesica marissinica 和浅水贝类 Ruditapes philippinarum 的赖氨酸乙酰化进行了比较研究:结果:共鉴定出 539 个乙酰化蛋白质,1634 个乙酰化位点。保守基团富集分析表明,基团-KacR-、-KacT-和-KacF-最为保守。随后对显著差异表达的乙酰化蛋白质进行了基因本体(GO)和京都基因和基因组百科全书(KEGG)富集分析。GO富集分析表明,乙酰化蛋白在各种生物过程中都起着关键作用,包括细胞对刺激的反应和其他细胞过程( p 结论:研究人员采用新颖的比较分析方法研究了鞘蛤科蛤类中赖氨酸的乙酰化,从而对赖氨酸乙酰化在深海生物中的调控作用有了新的认识。研究结果提出了许多潜在的蛋白质,可用于进一步探索冷渗蛤和其他深海软体动物的乙酰化功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative study of lysine acetylation in Vesicomyidae clam Archivesica marissinica and the manila clam Ruditapes philippinarum: adaptation mechanisms in cold seep environments.

Background: The deep-sea cold seep zone is characterized by high pressure, low temperature, darkness, and oligotrophy. Vesicomyidae clams are the dominant species within this environment, often forming symbiotic relationships with chemosynthetic microbes. Understanding the mechanisms by which Vesicomyidae clams adapt to the cold seep environment is significant. Acetylation modification of lysine is known to play a crucial role in various metabolic processes. Consequently, investigating the role of lysine acetylation in the adaptation of Vesicomyidae clams to deep-sea environments is worthwhile. So, a comparative study of lysine acetylation in cold seep clam Archivesica marissinica and shallow water shellfish Ruditapes philippinarum was conducted.

Results: A total of 539 acetylated proteins were identified with 1634 acetylation sites. Conservative motif enrichment analysis revealed that the motifs -KacR-, -KacT-, and -KacF- were the most conserved. Subsequent gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were conducted on significantly differentially expressed acetylated proteins. The GO enrichment analysis indicated that acetylated proteins are crucial in various biological processes, including cellular response to stimulation, and other cellular processes ( p < 0.05 and false discovery rate (FDR) < 0.25). The results of KEGG enrichment analysis indicated that acetylated proteins are involved in various cellular processes, including tight junction, motor proteins, gap junction, phagosome, cGMP-PKG signaling pathways, endocytosis, glycolysis/gluconeogenesis, among others (p < 0.05 and FDR < 0.25). Notably, a high abundance of lysine acetylation was observed in the glycolysis/glycogenesis pathways, and the acetylation of glyceraldehyde 3-phosphate dehydrogenase might facilitate ATP production. Subsequent investigation into acetylation modifications associated with deep-sea adaptation revealed the specific identification of key acetylated proteins. Among these, the adaptation of cold seep clam hemoglobin and heat shock protein to high hydrostatic pressure and low temperature might involve an increase in acetylation levels. Acetylation of arginine kinase might be related to ATP production and interaction with symbiotic bacteria. Myosin heavy chain (Ama01085) has the most acetylation sites and might improve the actomyosin system stability through acetylation. Further validation is required for the acetylation modification from Vesicomyidae clams.

Conclusion: A novel comparative analysis was undertaken to investigate the acetylation of lysine in Vesicomyidae clams, yielding novel insights into the regulatory role of lysine acetylation in deep-sea organisms. The findings present many potential proteins for further exploration of acetylation functions in cold seep clams and other deep-sea mollusks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信