RNA 干环的翻译调控可减少基因表达噪音。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Candan Çelik, Pavol Bokes, Abhyudai Singh
{"title":"RNA 干环的翻译调控可减少基因表达噪音。","authors":"Candan Çelik, Pavol Bokes, Abhyudai Singh","doi":"10.1186/s12859-024-05939-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stochastic modelling plays a crucial role in comprehending the dynamics of intracellular events in various biochemical systems, including gene-expression models. Cell-to-cell variability arises from the stochasticity or noise in the levels of gene products such as messenger RNA (mRNA) and protein. The sources of noise can stem from different factors, including structural elements. Recent studies have revealed that the mRNA structure can be more intricate than previously assumed.</p><p><strong>Results: </strong>Here, we focus on the formation of stem-loops and present a reinterpretation of previous data, offering new insights. Our analysis demonstrates that stem-loops that restrict translation have the potential to reduce noise.</p><p><strong>Conclusions: </strong>In conclusion, we investigate a structured/generalised version of a stochastic gene-expression model, wherein mRNA molecules can be found in one of their finite number of different states and transition between them. By characterising and deriving non-trivial analytical expressions for the steady-state protein distribution, we provide two specific examples which can be readily obtained from the structured/generalised model, showcasing the model's practical applicability.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"24 Suppl 1","pages":"493"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515661/pdf/","citationCount":"0","resultStr":"{\"title\":\"Translation regulation by RNA stem-loops can reduce gene expression noise.\",\"authors\":\"Candan Çelik, Pavol Bokes, Abhyudai Singh\",\"doi\":\"10.1186/s12859-024-05939-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Stochastic modelling plays a crucial role in comprehending the dynamics of intracellular events in various biochemical systems, including gene-expression models. Cell-to-cell variability arises from the stochasticity or noise in the levels of gene products such as messenger RNA (mRNA) and protein. The sources of noise can stem from different factors, including structural elements. Recent studies have revealed that the mRNA structure can be more intricate than previously assumed.</p><p><strong>Results: </strong>Here, we focus on the formation of stem-loops and present a reinterpretation of previous data, offering new insights. Our analysis demonstrates that stem-loops that restrict translation have the potential to reduce noise.</p><p><strong>Conclusions: </strong>In conclusion, we investigate a structured/generalised version of a stochastic gene-expression model, wherein mRNA molecules can be found in one of their finite number of different states and transition between them. By characterising and deriving non-trivial analytical expressions for the steady-state protein distribution, we provide two specific examples which can be readily obtained from the structured/generalised model, showcasing the model's practical applicability.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"24 Suppl 1\",\"pages\":\"493\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515661/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05939-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05939-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:随机建模在理解各种生化系统(包括基因表达模型)中细胞内事件的动态方面发挥着至关重要的作用。细胞间的可变性源于信使核糖核酸(mRNA)和蛋白质等基因产物水平的随机性或噪声。噪音的来源可能来自不同的因素,包括结构元素。最近的研究发现,mRNA 结构可能比以前假设的更加复杂:在此,我们重点研究了茎环的形成,并对以前的数据进行了重新解释,提出了新的见解。我们的分析表明,限制翻译的茎环有可能减少噪音:总之,我们研究了随机基因表达模型的结构化/广义版本,其中 mRNA 分子可处于有限数量的不同状态之一,并可在这些状态之间转换。通过描述和推导稳态蛋白质分布的非难分析表达式,我们提供了两个具体的例子,这些例子可以很容易地从结构化/广义模型中获得,展示了该模型的实际应用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Translation regulation by RNA stem-loops can reduce gene expression noise.

Background: Stochastic modelling plays a crucial role in comprehending the dynamics of intracellular events in various biochemical systems, including gene-expression models. Cell-to-cell variability arises from the stochasticity or noise in the levels of gene products such as messenger RNA (mRNA) and protein. The sources of noise can stem from different factors, including structural elements. Recent studies have revealed that the mRNA structure can be more intricate than previously assumed.

Results: Here, we focus on the formation of stem-loops and present a reinterpretation of previous data, offering new insights. Our analysis demonstrates that stem-loops that restrict translation have the potential to reduce noise.

Conclusions: In conclusion, we investigate a structured/generalised version of a stochastic gene-expression model, wherein mRNA molecules can be found in one of their finite number of different states and transition between them. By characterising and deriving non-trivial analytical expressions for the steady-state protein distribution, we provide two specific examples which can be readily obtained from the structured/generalised model, showcasing the model's practical applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信