{"title":"阴离子交换色谱纯化过程中小鼠微小病毒洗脱行为的机理模型。","authors":"Ryunosuke Kitamura, Lena Enghauser, Riku Miyamoto, Takahiro Ichikawa, Takaki Aiso, Yumiko Masuda, Daisuke Kajihara, Hirofumi Kakihara, Koichi Nonaka","doi":"10.1002/btpr.3516","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to propose a methodology for developing a mechanistic model for viral clearance of the minute virus of mice (MVM) on flow-through anion exchange (AEX) chromatography. Protein surface analysis was applied to investigate the possibility of molecular interaction between the recombinant biotherapeutic and MVM. The protein product-free Tris buffers were spiked with MVM, and the MVM elution profile from AEX chromatography was quantitatively analyzed using quantitative polymerase chain reaction (qPCR) for pooled fractions. GoSilico™ Chromatography Modeling Software was applied to develop the mechanistic models for MVM species. For evaluating the visual fit of the developed model, the R<sup>2</sup> of intact MVM virions and uncoated capsids between the simulated and measured amount in each fraction are 0.880 and 0.948, respectively. Response surface plots of logarithmic reduction values (LRV) against pH and conductivity in loaded sample were generated to show the range for suitable loaded sample conditions for achieving a good LRV. To evaluate the applicability of the developed MVM elution model to a recombinant biotherapeutic, two demonstrations of AEX chromatography purification were performed with a loaded sample of a model monoclonal antibody. The peaks of the MVM species in the elution step of both runs were accurately simulated by the developed model. In addition, to assess the possibility of molecular interaction between the virus and the target protein significantly affecting the MVM elution behavior, the antibody's surface was evaluated in terms of hydrophobicity/hydrophilicity using surface analysis.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3516"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic model of minute virus of mice elution behavior in anion exchange chromatography purification.\",\"authors\":\"Ryunosuke Kitamura, Lena Enghauser, Riku Miyamoto, Takahiro Ichikawa, Takaki Aiso, Yumiko Masuda, Daisuke Kajihara, Hirofumi Kakihara, Koichi Nonaka\",\"doi\":\"10.1002/btpr.3516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to propose a methodology for developing a mechanistic model for viral clearance of the minute virus of mice (MVM) on flow-through anion exchange (AEX) chromatography. Protein surface analysis was applied to investigate the possibility of molecular interaction between the recombinant biotherapeutic and MVM. The protein product-free Tris buffers were spiked with MVM, and the MVM elution profile from AEX chromatography was quantitatively analyzed using quantitative polymerase chain reaction (qPCR) for pooled fractions. GoSilico™ Chromatography Modeling Software was applied to develop the mechanistic models for MVM species. For evaluating the visual fit of the developed model, the R<sup>2</sup> of intact MVM virions and uncoated capsids between the simulated and measured amount in each fraction are 0.880 and 0.948, respectively. Response surface plots of logarithmic reduction values (LRV) against pH and conductivity in loaded sample were generated to show the range for suitable loaded sample conditions for achieving a good LRV. To evaluate the applicability of the developed MVM elution model to a recombinant biotherapeutic, two demonstrations of AEX chromatography purification were performed with a loaded sample of a model monoclonal antibody. The peaks of the MVM species in the elution step of both runs were accurately simulated by the developed model. In addition, to assess the possibility of molecular interaction between the virus and the target protein significantly affecting the MVM elution behavior, the antibody's surface was evaluated in terms of hydrophobicity/hydrophilicity using surface analysis.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\" \",\"pages\":\"e3516\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.3516\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3516","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Mechanistic model of minute virus of mice elution behavior in anion exchange chromatography purification.
This study aimed to propose a methodology for developing a mechanistic model for viral clearance of the minute virus of mice (MVM) on flow-through anion exchange (AEX) chromatography. Protein surface analysis was applied to investigate the possibility of molecular interaction between the recombinant biotherapeutic and MVM. The protein product-free Tris buffers were spiked with MVM, and the MVM elution profile from AEX chromatography was quantitatively analyzed using quantitative polymerase chain reaction (qPCR) for pooled fractions. GoSilico™ Chromatography Modeling Software was applied to develop the mechanistic models for MVM species. For evaluating the visual fit of the developed model, the R2 of intact MVM virions and uncoated capsids between the simulated and measured amount in each fraction are 0.880 and 0.948, respectively. Response surface plots of logarithmic reduction values (LRV) against pH and conductivity in loaded sample were generated to show the range for suitable loaded sample conditions for achieving a good LRV. To evaluate the applicability of the developed MVM elution model to a recombinant biotherapeutic, two demonstrations of AEX chromatography purification were performed with a loaded sample of a model monoclonal antibody. The peaks of the MVM species in the elution step of both runs were accurately simulated by the developed model. In addition, to assess the possibility of molecular interaction between the virus and the target protein significantly affecting the MVM elution behavior, the antibody's surface was evaluated in terms of hydrophobicity/hydrophilicity using surface analysis.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.