Josephine M Kanta, Anne-Marie Lundsgaard, Jesper F Havelund, Sarah L Amour, Ole Bæk, Duc Ninh Nguyen, Erik A Richter, Jakob G Knudsen, Maximilian Kleinert, Nils Faergeman, Andreas M Fritzen, Bente Kiens
{"title":"肥胖症患者摄入中链三酰甘油可保留代谢效应","authors":"Josephine M Kanta, Anne-Marie Lundsgaard, Jesper F Havelund, Sarah L Amour, Ole Bæk, Duc Ninh Nguyen, Erik A Richter, Jakob G Knudsen, Maximilian Kleinert, Nils Faergeman, Andreas M Fritzen, Bente Kiens","doi":"10.1152/ajpendo.00234.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Several health beneficial effects are associated with intake of medium-chain triacylglycerol (MCT), however, the underlying mechanisms are unknown. Furthermore, it remains uncertain whether the acute metabolic effects of MCT differ between lean individuals and individuals with obesity - and whether these effects are sustained following chronic intake. This study aimed to elucidate the postprandial physiological and metabolic effects of MCT before and after eight days intake compared to intake of energy-matched triacylglycerol consisting of long-chain fatty acids (LCT) using a randomized cross-over design in lean individuals (n=8) and individuals with obesity (n=8). The study revealed that consumption of MCT increased ketogenesis and metabolic rate, while lowering blood glucose levels over five hours. The hypoglycemic action of MCT intake was accompanied by a concomitant transient increase in plasma insulin and glucagon levels. Interestingly, the effects on ketogenesis, metabolic rate, and glycemia were preserved in individuals with obesity and sustained after eight days of daily supplementation. Lipidomic plasma analysis in lean individuals (n=4) showed that a part of the ingested MCT bypasses the liver and entered the systemic circulation as medium-chain fatty acids (MCFA). The findings suggest that MCFA, along with ketone bodies from the liver, may act as signaling molecules and/or substrates in the peripheral tissues, thereby contributing to the effects of MCT intake. In summary, these findings underscore the health benefits of MCT in metabolically compromised individuals after daily supplementation. Moreover, we uncover novel aspects of MCFA biology, providing insights into how these fatty acids orchestrate physiological effects in humans.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic Effects of Medium-Chain Triacylglycerol Consumption are Preserved in Obesity.\",\"authors\":\"Josephine M Kanta, Anne-Marie Lundsgaard, Jesper F Havelund, Sarah L Amour, Ole Bæk, Duc Ninh Nguyen, Erik A Richter, Jakob G Knudsen, Maximilian Kleinert, Nils Faergeman, Andreas M Fritzen, Bente Kiens\",\"doi\":\"10.1152/ajpendo.00234.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several health beneficial effects are associated with intake of medium-chain triacylglycerol (MCT), however, the underlying mechanisms are unknown. Furthermore, it remains uncertain whether the acute metabolic effects of MCT differ between lean individuals and individuals with obesity - and whether these effects are sustained following chronic intake. This study aimed to elucidate the postprandial physiological and metabolic effects of MCT before and after eight days intake compared to intake of energy-matched triacylglycerol consisting of long-chain fatty acids (LCT) using a randomized cross-over design in lean individuals (n=8) and individuals with obesity (n=8). The study revealed that consumption of MCT increased ketogenesis and metabolic rate, while lowering blood glucose levels over five hours. The hypoglycemic action of MCT intake was accompanied by a concomitant transient increase in plasma insulin and glucagon levels. Interestingly, the effects on ketogenesis, metabolic rate, and glycemia were preserved in individuals with obesity and sustained after eight days of daily supplementation. Lipidomic plasma analysis in lean individuals (n=4) showed that a part of the ingested MCT bypasses the liver and entered the systemic circulation as medium-chain fatty acids (MCFA). The findings suggest that MCFA, along with ketone bodies from the liver, may act as signaling molecules and/or substrates in the peripheral tissues, thereby contributing to the effects of MCT intake. In summary, these findings underscore the health benefits of MCT in metabolically compromised individuals after daily supplementation. Moreover, we uncover novel aspects of MCFA biology, providing insights into how these fatty acids orchestrate physiological effects in humans.</p>\",\"PeriodicalId\":7594,\"journal\":{\"name\":\"American journal of physiology. Endocrinology and metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Endocrinology and metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpendo.00234.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00234.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Metabolic Effects of Medium-Chain Triacylglycerol Consumption are Preserved in Obesity.
Several health beneficial effects are associated with intake of medium-chain triacylglycerol (MCT), however, the underlying mechanisms are unknown. Furthermore, it remains uncertain whether the acute metabolic effects of MCT differ between lean individuals and individuals with obesity - and whether these effects are sustained following chronic intake. This study aimed to elucidate the postprandial physiological and metabolic effects of MCT before and after eight days intake compared to intake of energy-matched triacylglycerol consisting of long-chain fatty acids (LCT) using a randomized cross-over design in lean individuals (n=8) and individuals with obesity (n=8). The study revealed that consumption of MCT increased ketogenesis and metabolic rate, while lowering blood glucose levels over five hours. The hypoglycemic action of MCT intake was accompanied by a concomitant transient increase in plasma insulin and glucagon levels. Interestingly, the effects on ketogenesis, metabolic rate, and glycemia were preserved in individuals with obesity and sustained after eight days of daily supplementation. Lipidomic plasma analysis in lean individuals (n=4) showed that a part of the ingested MCT bypasses the liver and entered the systemic circulation as medium-chain fatty acids (MCFA). The findings suggest that MCFA, along with ketone bodies from the liver, may act as signaling molecules and/or substrates in the peripheral tissues, thereby contributing to the effects of MCT intake. In summary, these findings underscore the health benefits of MCT in metabolically compromised individuals after daily supplementation. Moreover, we uncover novel aspects of MCFA biology, providing insights into how these fatty acids orchestrate physiological effects in humans.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.