Hua Long, Adam Simmons, Arthur Mayorga, Brady Burgess, Tuan Nguyen, Balasubrahmanyam Budda, Anna Rychkova, Herve Rhinn, Ilaria Tassi, Michael Ward, Felix Yeh, Tina Schwabe, Robert Paul, Sara Kenkare-Mitra, Arnon Rosenthal
{"title":"对治疗阿尔茨海默病的新型 TREM2 激动剂抗体 AL002 进行临床前和首次人体试验评估。","authors":"Hua Long, Adam Simmons, Arthur Mayorga, Brady Burgess, Tuan Nguyen, Balasubrahmanyam Budda, Anna Rychkova, Herve Rhinn, Ilaria Tassi, Michael Ward, Felix Yeh, Tina Schwabe, Robert Paul, Sara Kenkare-Mitra, Arnon Rosenthal","doi":"10.1186/s13195-024-01599-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Variants of the gene triggering receptor expressed on myeloid cells-2 (TREM2) increase the risk of Alzheimer's disease (AD) and other neurodegenerative disorders. Signaling by TREM2, an innate immune receptor expressed by microglia, is thought to enhance phagocytosis of amyloid beta (Aβ) and other damaged proteins, promote microglial proliferation, migration, and survival, and regulate inflammatory signaling. Thus, TREM2 activation has potential to alter the progression of AD. AL002 is an investigational, engineered, humanized monoclonal immunoglobulin G1 (IgG1) antibody designed to target TREM2. In AD mouse models, an AL002 murine variant has been previously shown to induce microglial proliferation and reduce filamentous Aβ plaques and neurite dystrophy.</p><p><strong>Methods: </strong>Preclinical studies assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of AL002 in cynomolgus monkeys. INVOKE-1 (NCT03635047) was a first-in-human phase 1, randomized, placebo-controlled, double-blind study assessing the safety, tolerability, PK, and PD of AL002 administered as single ascending doses (SAD) in healthy volunteers.</p><p><strong>Results: </strong>In cynomolgus monkeys, weekly intravenous injections of AL002 for 4 weeks were well tolerated, dose-dependently decreased soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF) and total TREM2 in hippocampus and frontal cortex, and increased biomarkers of TREM2 signaling in CSF and brain. In the phase 1 study of 64 healthy volunteers, a single intravenous infusion of AL002 demonstrated brain target engagement based on a dose-dependent reduction of sTREM2 in CSF and parallel increases in biomarkers of TREM2 signaling and microglia recruitment. Single-dose AL002 showed central nervous system penetrance and was well tolerated, with no treatment-related serious adverse events over 12 weeks.</p><p><strong>Conclusions: </strong>These findings support the continued clinical development of AL002 for AD and other neurodegenerative diseases in which TREM2 activation may be beneficial. AL002 is currently being tested in a phase 2, randomized, double-blind, placebo-controlled study in early AD.</p><p><strong>Trial registration: </strong>Clinicaltrials.gov, NCT03635047. Registered on August 15, 2018, https://www.</p><p><strong>Clinicaltrials: </strong>gov/study/NCT03635047 .</p>","PeriodicalId":7516,"journal":{"name":"Alzheimer's Research & Therapy","volume":"16 1","pages":"235"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515656/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preclinical and first-in-human evaluation of AL002, a novel TREM2 agonistic antibody for Alzheimer's disease.\",\"authors\":\"Hua Long, Adam Simmons, Arthur Mayorga, Brady Burgess, Tuan Nguyen, Balasubrahmanyam Budda, Anna Rychkova, Herve Rhinn, Ilaria Tassi, Michael Ward, Felix Yeh, Tina Schwabe, Robert Paul, Sara Kenkare-Mitra, Arnon Rosenthal\",\"doi\":\"10.1186/s13195-024-01599-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Variants of the gene triggering receptor expressed on myeloid cells-2 (TREM2) increase the risk of Alzheimer's disease (AD) and other neurodegenerative disorders. Signaling by TREM2, an innate immune receptor expressed by microglia, is thought to enhance phagocytosis of amyloid beta (Aβ) and other damaged proteins, promote microglial proliferation, migration, and survival, and regulate inflammatory signaling. Thus, TREM2 activation has potential to alter the progression of AD. AL002 is an investigational, engineered, humanized monoclonal immunoglobulin G1 (IgG1) antibody designed to target TREM2. In AD mouse models, an AL002 murine variant has been previously shown to induce microglial proliferation and reduce filamentous Aβ plaques and neurite dystrophy.</p><p><strong>Methods: </strong>Preclinical studies assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of AL002 in cynomolgus monkeys. INVOKE-1 (NCT03635047) was a first-in-human phase 1, randomized, placebo-controlled, double-blind study assessing the safety, tolerability, PK, and PD of AL002 administered as single ascending doses (SAD) in healthy volunteers.</p><p><strong>Results: </strong>In cynomolgus monkeys, weekly intravenous injections of AL002 for 4 weeks were well tolerated, dose-dependently decreased soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF) and total TREM2 in hippocampus and frontal cortex, and increased biomarkers of TREM2 signaling in CSF and brain. In the phase 1 study of 64 healthy volunteers, a single intravenous infusion of AL002 demonstrated brain target engagement based on a dose-dependent reduction of sTREM2 in CSF and parallel increases in biomarkers of TREM2 signaling and microglia recruitment. Single-dose AL002 showed central nervous system penetrance and was well tolerated, with no treatment-related serious adverse events over 12 weeks.</p><p><strong>Conclusions: </strong>These findings support the continued clinical development of AL002 for AD and other neurodegenerative diseases in which TREM2 activation may be beneficial. AL002 is currently being tested in a phase 2, randomized, double-blind, placebo-controlled study in early AD.</p><p><strong>Trial registration: </strong>Clinicaltrials.gov, NCT03635047. Registered on August 15, 2018, https://www.</p><p><strong>Clinicaltrials: </strong>gov/study/NCT03635047 .</p>\",\"PeriodicalId\":7516,\"journal\":{\"name\":\"Alzheimer's Research & Therapy\",\"volume\":\"16 1\",\"pages\":\"235\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515656/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alzheimer's Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13195-024-01599-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13195-024-01599-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Preclinical and first-in-human evaluation of AL002, a novel TREM2 agonistic antibody for Alzheimer's disease.
Background: Variants of the gene triggering receptor expressed on myeloid cells-2 (TREM2) increase the risk of Alzheimer's disease (AD) and other neurodegenerative disorders. Signaling by TREM2, an innate immune receptor expressed by microglia, is thought to enhance phagocytosis of amyloid beta (Aβ) and other damaged proteins, promote microglial proliferation, migration, and survival, and regulate inflammatory signaling. Thus, TREM2 activation has potential to alter the progression of AD. AL002 is an investigational, engineered, humanized monoclonal immunoglobulin G1 (IgG1) antibody designed to target TREM2. In AD mouse models, an AL002 murine variant has been previously shown to induce microglial proliferation and reduce filamentous Aβ plaques and neurite dystrophy.
Methods: Preclinical studies assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of AL002 in cynomolgus monkeys. INVOKE-1 (NCT03635047) was a first-in-human phase 1, randomized, placebo-controlled, double-blind study assessing the safety, tolerability, PK, and PD of AL002 administered as single ascending doses (SAD) in healthy volunteers.
Results: In cynomolgus monkeys, weekly intravenous injections of AL002 for 4 weeks were well tolerated, dose-dependently decreased soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF) and total TREM2 in hippocampus and frontal cortex, and increased biomarkers of TREM2 signaling in CSF and brain. In the phase 1 study of 64 healthy volunteers, a single intravenous infusion of AL002 demonstrated brain target engagement based on a dose-dependent reduction of sTREM2 in CSF and parallel increases in biomarkers of TREM2 signaling and microglia recruitment. Single-dose AL002 showed central nervous system penetrance and was well tolerated, with no treatment-related serious adverse events over 12 weeks.
Conclusions: These findings support the continued clinical development of AL002 for AD and other neurodegenerative diseases in which TREM2 activation may be beneficial. AL002 is currently being tested in a phase 2, randomized, double-blind, placebo-controlled study in early AD.
Trial registration: Clinicaltrials.gov, NCT03635047. Registered on August 15, 2018, https://www.
期刊介绍:
Alzheimer's Research & Therapy is an international peer-reviewed journal that focuses on translational research into Alzheimer's disease and other neurodegenerative diseases. It publishes open-access basic research, clinical trials, drug discovery and development studies, and epidemiologic studies. The journal also includes reviews, viewpoints, commentaries, debates, and reports. All articles published in Alzheimer's Research & Therapy are included in several reputable databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, MEDLINE, PubMed, PubMed Central, Science Citation Index Expanded (Web of Science) and Scopus.