Caspar J. Van Lissa, Eli-Boaz Clapper, Rebecca Kuiper
{"title":"使用乘积贝叶斯因子汇总概念复制研究证据的教程。","authors":"Caspar J. Van Lissa, Eli-Boaz Clapper, Rebecca Kuiper","doi":"10.1002/jrsm.1765","DOIUrl":null,"url":null,"abstract":"<p>The product Bayes factor (PBF) synthesizes evidence for an informative hypothesis across heterogeneous replication studies. It can be used when fixed- or random effects meta-analysis fall short. For example, when effect sizes are incomparable and cannot be pooled, or when studies diverge significantly in the populations, study designs, and measures used. PBF shines as a solution for small sample meta-analyses, where the number of between-study differences is often large relative to the number of studies, precluding the use of meta-regression to account for these differences. Users should be mindful of the fact that the PBF answers a qualitatively different research question than other evidence synthesis methods. For example, whereas fixed-effect meta-analysis estimates the size of a population effect, the PBF quantifies to what extent an informative hypothesis is supported in all included studies. This tutorial paper showcases the user-friendly PBF functionality within the bain R-package. This new implementation of an existing method was validated using a simulation study, available in an Online Supplement. Results showed that PBF had a high overall accuracy, due to greater sensitivity and lower specificity, compared to random-effects meta-analysis, individual participant data meta-analysis, and vote counting. Tutorials demonstrate applications of the method on meta-analytic and individual participant data. The example datasets, based on published research, are included in bain so readers can reproduce the examples and apply the code to their own data. The PBF is a promising method for synthesizing evidence for informative hypotheses across conceptual replications that are not suitable for conventional meta-analysis.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 6","pages":"1231-1243"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1765","citationCount":"0","resultStr":"{\"title\":\"A tutorial on aggregating evidence from conceptual replication studies using the product Bayes factor\",\"authors\":\"Caspar J. Van Lissa, Eli-Boaz Clapper, Rebecca Kuiper\",\"doi\":\"10.1002/jrsm.1765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The product Bayes factor (PBF) synthesizes evidence for an informative hypothesis across heterogeneous replication studies. It can be used when fixed- or random effects meta-analysis fall short. For example, when effect sizes are incomparable and cannot be pooled, or when studies diverge significantly in the populations, study designs, and measures used. PBF shines as a solution for small sample meta-analyses, where the number of between-study differences is often large relative to the number of studies, precluding the use of meta-regression to account for these differences. Users should be mindful of the fact that the PBF answers a qualitatively different research question than other evidence synthesis methods. For example, whereas fixed-effect meta-analysis estimates the size of a population effect, the PBF quantifies to what extent an informative hypothesis is supported in all included studies. This tutorial paper showcases the user-friendly PBF functionality within the bain R-package. This new implementation of an existing method was validated using a simulation study, available in an Online Supplement. Results showed that PBF had a high overall accuracy, due to greater sensitivity and lower specificity, compared to random-effects meta-analysis, individual participant data meta-analysis, and vote counting. Tutorials demonstrate applications of the method on meta-analytic and individual participant data. The example datasets, based on published research, are included in bain so readers can reproduce the examples and apply the code to their own data. The PBF is a promising method for synthesizing evidence for informative hypotheses across conceptual replications that are not suitable for conventional meta-analysis.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 6\",\"pages\":\"1231-1243\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1765\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1765\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1765","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A tutorial on aggregating evidence from conceptual replication studies using the product Bayes factor
The product Bayes factor (PBF) synthesizes evidence for an informative hypothesis across heterogeneous replication studies. It can be used when fixed- or random effects meta-analysis fall short. For example, when effect sizes are incomparable and cannot be pooled, or when studies diverge significantly in the populations, study designs, and measures used. PBF shines as a solution for small sample meta-analyses, where the number of between-study differences is often large relative to the number of studies, precluding the use of meta-regression to account for these differences. Users should be mindful of the fact that the PBF answers a qualitatively different research question than other evidence synthesis methods. For example, whereas fixed-effect meta-analysis estimates the size of a population effect, the PBF quantifies to what extent an informative hypothesis is supported in all included studies. This tutorial paper showcases the user-friendly PBF functionality within the bain R-package. This new implementation of an existing method was validated using a simulation study, available in an Online Supplement. Results showed that PBF had a high overall accuracy, due to greater sensitivity and lower specificity, compared to random-effects meta-analysis, individual participant data meta-analysis, and vote counting. Tutorials demonstrate applications of the method on meta-analytic and individual participant data. The example datasets, based on published research, are included in bain so readers can reproduce the examples and apply the code to their own data. The PBF is a promising method for synthesizing evidence for informative hypotheses across conceptual replications that are not suitable for conventional meta-analysis.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.