橄榄渣再循环:通过酶水解法生产纤维素纳米纤维并将其应用于淀粉薄膜,实现生态友好。

IF 3.2 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Patrik de Souza Rocha, Carlos Henrique Pagno, Tainara de Moraes Crizel, Simone Hickmann Flôres, Plinho Francisco Hertz
{"title":"橄榄渣再循环:通过酶水解法生产纤维素纳米纤维并将其应用于淀粉薄膜,实现生态友好。","authors":"Patrik de Souza Rocha, Carlos Henrique Pagno, Tainara de Moraes Crizel, Simone Hickmann Flôres, Plinho Francisco Hertz","doi":"10.1111/1750-3841.17454","DOIUrl":null,"url":null,"abstract":"<p><p>Olive pomace (OP) waste, produced in large quantities, contains significant amounts of cellulose and fibers, making it a valuable resource for developing reinforcing ingredients in biodegradable packaging materials. This study aimed to produce nanofibers from OP using enzymatic hydrolysis with hemicellulases and cellulases, and to incorporate these nanofibers into starch films as a reinforcing agent. Cellulose nanofibers (CNFs) were prepared by alkaline pretreatment followed by enzymatic hydrolysis (with hemicellulases and cellulases) from olive pomace and applied as reinforcement in starch films in concentrations of 0.5%-5% (w/v). The nanofibers were analyzed according to composition, structural, and thermal properties. The nanofibers' suspension presented a cloudy and white color in aqueous suspension, the X-ray diffraction (XRD) analysis showed the increase of crystallinity, and the fibers' range was no wider than 100 nm (according to Scherer equation). The composition analysis showed the decrease of carbonyl groups of hemicellulose and lignin. The starch films presented a homogenous surface. The solubility from these biodegradable films significantly reduced after the incorporation of CNF, and the nanomaterial's presence improved the degradation temperature (from 310°C to 322°C) and the mechanical resistance because the tension of rupture increased from 3.79 to 6.21 MPa. PRACTICAL APPLICATION: The utilization of waste from the olive pomace for cellulose nanofiber production holds promise, given the nanofibers' ability to readily integrate into various materials, including starches used in biodegradable film production. Within these matrices, nanofibers act as structure reinforcers and significantly reduce the solubility of films. Although biodegradable films ensure the shelf life, safety, and quality of food, their properties currently do not match those of traditional petroleum-based materials at an industrial scale, indicating a need for further enhancement.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Olive pomace upcycling: Eco-friendly production of cellulose nanofibers by enzymatic hydrolysis and application in starch films.\",\"authors\":\"Patrik de Souza Rocha, Carlos Henrique Pagno, Tainara de Moraes Crizel, Simone Hickmann Flôres, Plinho Francisco Hertz\",\"doi\":\"10.1111/1750-3841.17454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Olive pomace (OP) waste, produced in large quantities, contains significant amounts of cellulose and fibers, making it a valuable resource for developing reinforcing ingredients in biodegradable packaging materials. This study aimed to produce nanofibers from OP using enzymatic hydrolysis with hemicellulases and cellulases, and to incorporate these nanofibers into starch films as a reinforcing agent. Cellulose nanofibers (CNFs) were prepared by alkaline pretreatment followed by enzymatic hydrolysis (with hemicellulases and cellulases) from olive pomace and applied as reinforcement in starch films in concentrations of 0.5%-5% (w/v). The nanofibers were analyzed according to composition, structural, and thermal properties. The nanofibers' suspension presented a cloudy and white color in aqueous suspension, the X-ray diffraction (XRD) analysis showed the increase of crystallinity, and the fibers' range was no wider than 100 nm (according to Scherer equation). The composition analysis showed the decrease of carbonyl groups of hemicellulose and lignin. The starch films presented a homogenous surface. The solubility from these biodegradable films significantly reduced after the incorporation of CNF, and the nanomaterial's presence improved the degradation temperature (from 310°C to 322°C) and the mechanical resistance because the tension of rupture increased from 3.79 to 6.21 MPa. PRACTICAL APPLICATION: The utilization of waste from the olive pomace for cellulose nanofiber production holds promise, given the nanofibers' ability to readily integrate into various materials, including starches used in biodegradable film production. Within these matrices, nanofibers act as structure reinforcers and significantly reduce the solubility of films. Although biodegradable films ensure the shelf life, safety, and quality of food, their properties currently do not match those of traditional petroleum-based materials at an industrial scale, indicating a need for further enhancement.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1750-3841.17454\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17454","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大量生产的橄榄渣(OP)废料含有大量纤维素和纤维,是开发可生物降解包装材料增强成分的宝贵资源。本研究旨在利用半纤维素酶和纤维素酶的酶水解作用从 OP 中生产纳米纤维,并将这些纳米纤维作为增强剂加入淀粉薄膜中。通过碱性预处理,然后用半纤维素酶和纤维素酶对橄榄渣进行酶水解,制备出纤维素纳米纤维(CNFs),并将其用作淀粉膜的增强剂,浓度为 0.5%-5%(w/v)。对纳米纤维的成分、结构和热性能进行了分析。纳米纤维的悬浮液在水悬浮液中呈现浑浊的白色,X 射线衍射(XRD)分析表明结晶度增加,纤维范围不大于 100 nm(根据舍勒方程)。成分分析表明,半纤维素和木质素的羰基减少。淀粉膜表面均匀。加入 CNF 后,这些生物降解薄膜的溶解度明显降低,纳米材料的存在提高了降解温度(从 310°C 提高到 322°C)和机械阻力,因为断裂张力从 3.79 兆帕提高到 6.21 兆帕。实际应用:利用橄榄渣废料生产纤维素纳米纤维很有前景,因为纳米纤维能够很容易地融入各种材料,包括用于生产生物降解薄膜的淀粉。在这些基质中,纳米纤维可作为结构强化剂,并显著降低薄膜的溶解度。虽然生物降解薄膜可确保食品的保质期、安全性和质量,但其性能目前在工业规模上还无法与传统的石油基材料相媲美,因此需要进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Olive pomace upcycling: Eco-friendly production of cellulose nanofibers by enzymatic hydrolysis and application in starch films.

Olive pomace (OP) waste, produced in large quantities, contains significant amounts of cellulose and fibers, making it a valuable resource for developing reinforcing ingredients in biodegradable packaging materials. This study aimed to produce nanofibers from OP using enzymatic hydrolysis with hemicellulases and cellulases, and to incorporate these nanofibers into starch films as a reinforcing agent. Cellulose nanofibers (CNFs) were prepared by alkaline pretreatment followed by enzymatic hydrolysis (with hemicellulases and cellulases) from olive pomace and applied as reinforcement in starch films in concentrations of 0.5%-5% (w/v). The nanofibers were analyzed according to composition, structural, and thermal properties. The nanofibers' suspension presented a cloudy and white color in aqueous suspension, the X-ray diffraction (XRD) analysis showed the increase of crystallinity, and the fibers' range was no wider than 100 nm (according to Scherer equation). The composition analysis showed the decrease of carbonyl groups of hemicellulose and lignin. The starch films presented a homogenous surface. The solubility from these biodegradable films significantly reduced after the incorporation of CNF, and the nanomaterial's presence improved the degradation temperature (from 310°C to 322°C) and the mechanical resistance because the tension of rupture increased from 3.79 to 6.21 MPa. PRACTICAL APPLICATION: The utilization of waste from the olive pomace for cellulose nanofiber production holds promise, given the nanofibers' ability to readily integrate into various materials, including starches used in biodegradable film production. Within these matrices, nanofibers act as structure reinforcers and significantly reduce the solubility of films. Although biodegradable films ensure the shelf life, safety, and quality of food, their properties currently do not match those of traditional petroleum-based materials at an industrial scale, indicating a need for further enhancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Science
Journal of Food Science 工程技术-食品科技
CiteScore
7.10
自引率
2.60%
发文量
412
审稿时长
3.1 months
期刊介绍: The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science. The range of topics covered in the journal include: -Concise Reviews and Hypotheses in Food Science -New Horizons in Food Research -Integrated Food Science -Food Chemistry -Food Engineering, Materials Science, and Nanotechnology -Food Microbiology and Safety -Sensory and Consumer Sciences -Health, Nutrition, and Food -Toxicology and Chemical Food Safety The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信