{"title":"细胞衰老有助于大鼠半月板的自发修复。","authors":"Yusuke Aimono, Kentaro Endo, Ichiro Sekiya","doi":"10.1111/acel.14385","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence, traditionally associated with aging and chronic diseases, has recently been identified as a potential facilitator of tissue regeneration via a senescence-associated secretory phenotype (SASP). In rodents, the meniscus is known to regenerate spontaneously from the surrounding synovium, but the mechanism, and especially its relationship to cellular senescence, remains unclear. This study investigated the contribution of cellular senescence to spontaneous repair of the rat meniscus. We created a rat partial medial meniscectomy (pMx) model to evaluate time-course changes in regenerative tissue. Immunohistochemistry revealed marked increases in p16 expression and senescence-associated beta-galactosidase (SA-β-gal) activity in the regenerating tissue at the early phase after pMx surgery. RNA sequencing of regenerating tissues identified the upregulation of genes related to aging, extracellular matrix organization, and cell proliferation. Fluorescence staining identified high expression of SOX9, a master regulator of cartilage/meniscus development, adjacent to p16-positive cells. In vitro investigations of the effect of SASP factors on synovial fibroblasts (SFs) demonstrated that conditioned medium from senescent SFs stimulated the proliferation and chondrogenic differentiation of normal SFs. In vivo histological evaluation to determine whether selective elimination of senescent cells with a senolytic drug (ABT-263) retarded spontaneous repair of meniscus in vivo confirmed that ABT-263 decreased the meniscus score and expression of SOX9, aggrecan, and type 1 collagen. Our findings indicate that transient senescent cell accumulation and SASP in regenerating tissues beneficially contribute to spontaneous repair of the rat meniscus. Further research into the molecular mechanism will provide a novel strategy for meniscus regeneration based on cellular senescence.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14385"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular senescence contributes to spontaneous repair of the rat meniscus.\",\"authors\":\"Yusuke Aimono, Kentaro Endo, Ichiro Sekiya\",\"doi\":\"10.1111/acel.14385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular senescence, traditionally associated with aging and chronic diseases, has recently been identified as a potential facilitator of tissue regeneration via a senescence-associated secretory phenotype (SASP). In rodents, the meniscus is known to regenerate spontaneously from the surrounding synovium, but the mechanism, and especially its relationship to cellular senescence, remains unclear. This study investigated the contribution of cellular senescence to spontaneous repair of the rat meniscus. We created a rat partial medial meniscectomy (pMx) model to evaluate time-course changes in regenerative tissue. Immunohistochemistry revealed marked increases in p16 expression and senescence-associated beta-galactosidase (SA-β-gal) activity in the regenerating tissue at the early phase after pMx surgery. RNA sequencing of regenerating tissues identified the upregulation of genes related to aging, extracellular matrix organization, and cell proliferation. Fluorescence staining identified high expression of SOX9, a master regulator of cartilage/meniscus development, adjacent to p16-positive cells. In vitro investigations of the effect of SASP factors on synovial fibroblasts (SFs) demonstrated that conditioned medium from senescent SFs stimulated the proliferation and chondrogenic differentiation of normal SFs. In vivo histological evaluation to determine whether selective elimination of senescent cells with a senolytic drug (ABT-263) retarded spontaneous repair of meniscus in vivo confirmed that ABT-263 decreased the meniscus score and expression of SOX9, aggrecan, and type 1 collagen. Our findings indicate that transient senescent cell accumulation and SASP in regenerating tissues beneficially contribute to spontaneous repair of the rat meniscus. Further research into the molecular mechanism will provide a novel strategy for meniscus regeneration based on cellular senescence.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14385\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14385\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14385","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Cellular senescence contributes to spontaneous repair of the rat meniscus.
Cellular senescence, traditionally associated with aging and chronic diseases, has recently been identified as a potential facilitator of tissue regeneration via a senescence-associated secretory phenotype (SASP). In rodents, the meniscus is known to regenerate spontaneously from the surrounding synovium, but the mechanism, and especially its relationship to cellular senescence, remains unclear. This study investigated the contribution of cellular senescence to spontaneous repair of the rat meniscus. We created a rat partial medial meniscectomy (pMx) model to evaluate time-course changes in regenerative tissue. Immunohistochemistry revealed marked increases in p16 expression and senescence-associated beta-galactosidase (SA-β-gal) activity in the regenerating tissue at the early phase after pMx surgery. RNA sequencing of regenerating tissues identified the upregulation of genes related to aging, extracellular matrix organization, and cell proliferation. Fluorescence staining identified high expression of SOX9, a master regulator of cartilage/meniscus development, adjacent to p16-positive cells. In vitro investigations of the effect of SASP factors on synovial fibroblasts (SFs) demonstrated that conditioned medium from senescent SFs stimulated the proliferation and chondrogenic differentiation of normal SFs. In vivo histological evaluation to determine whether selective elimination of senescent cells with a senolytic drug (ABT-263) retarded spontaneous repair of meniscus in vivo confirmed that ABT-263 decreased the meniscus score and expression of SOX9, aggrecan, and type 1 collagen. Our findings indicate that transient senescent cell accumulation and SASP in regenerating tissues beneficially contribute to spontaneous repair of the rat meniscus. Further research into the molecular mechanism will provide a novel strategy for meniscus regeneration based on cellular senescence.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.