机器学习加速发现用于催化氧化的熵稳定氧化物催化剂。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Journal of the American Chemical Society Pub Date : 2025-01-08 Epub Date: 2024-10-27 DOI:10.1021/jacs.4c12838
Xiaolan Duan, Yang Li, Jiahua Zhao, Mengyuan Zhang, Xiaopeng Wang, Li Zhang, Xiaoxuan Ma, Ying Qu, Pengfei Zhang
{"title":"机器学习加速发现用于催化氧化的熵稳定氧化物催化剂。","authors":"Xiaolan Duan, Yang Li, Jiahua Zhao, Mengyuan Zhang, Xiaopeng Wang, Li Zhang, Xiaoxuan Ma, Ying Qu, Pengfei Zhang","doi":"10.1021/jacs.4c12838","DOIUrl":null,"url":null,"abstract":"<p><p>The catalytic properties of unary to ternary metal oxides were already well experimentally explored, and the left space seems like only high entropy metal oxides (HEOs, element types ≥5). However, the countless element compositions make the trial-and-error method of discovering HEO catalysts impossible. Herein, based on the study of the crystal phase and catalytic performance of the ACr<sub>2</sub>O<sub><i>x</i></sub> catalyst system, the strong correlation between the single spinel phase and good catalytic activity of CH<sub>4</sub> oxidation was inferred owing to the similar element importance sequences, which were acquired by the corresponding high accuracy machine learning models (cross-validation score >0.7). Furthermore, searching for negative data and choosing the proper training data resulted in high-quality regression models to search for better catalysts. Finally, the screened irregular catalyst Ni<sub>0.04</sub>Co<sub>0.48</sub>Zn<sub>0.36</sub>V<sub>0.12</sub>Cr<sub>2</sub>O<sub><i>x</i></sub> with outstanding sulfur and moisture resistance and long-term stability (>7000 h, <i>T</i><sub>90</sub> = 345 °C) envisions the potential of applying the machine learning method to discover HEOs for target processes.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"651-661"},"PeriodicalIF":15.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Accelerated Discovery of Entropy-Stabilized Oxide Catalysts for Catalytic Oxidation.\",\"authors\":\"Xiaolan Duan, Yang Li, Jiahua Zhao, Mengyuan Zhang, Xiaopeng Wang, Li Zhang, Xiaoxuan Ma, Ying Qu, Pengfei Zhang\",\"doi\":\"10.1021/jacs.4c12838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The catalytic properties of unary to ternary metal oxides were already well experimentally explored, and the left space seems like only high entropy metal oxides (HEOs, element types ≥5). However, the countless element compositions make the trial-and-error method of discovering HEO catalysts impossible. Herein, based on the study of the crystal phase and catalytic performance of the ACr<sub>2</sub>O<sub><i>x</i></sub> catalyst system, the strong correlation between the single spinel phase and good catalytic activity of CH<sub>4</sub> oxidation was inferred owing to the similar element importance sequences, which were acquired by the corresponding high accuracy machine learning models (cross-validation score >0.7). Furthermore, searching for negative data and choosing the proper training data resulted in high-quality regression models to search for better catalysts. Finally, the screened irregular catalyst Ni<sub>0.04</sub>Co<sub>0.48</sub>Zn<sub>0.36</sub>V<sub>0.12</sub>Cr<sub>2</sub>O<sub><i>x</i></sub> with outstanding sulfur and moisture resistance and long-term stability (>7000 h, <i>T</i><sub>90</sub> = 345 °C) envisions the potential of applying the machine learning method to discover HEOs for target processes.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"651-661\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c12838\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12838","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从一元金属氧化物到三元金属氧化物的催化特性已经得到了很好的实验探索,剩下的空间似乎只有高熵金属氧化物(HEO,元素类型≥5)。然而,无数的元素组成使得试错法发现高熵金属氧化物催化剂成为不可能。在此,基于对 ACr2Ox 催化剂体系的晶相和催化性能的研究,通过相应的高精度机器学习模型(交叉验证得分大于 0.7)获得的相似元素重要性序列,推断出单一尖晶石相与良好的 CH4 氧化催化活性之间的强相关性。此外,通过搜索负数据和选择适当的训练数据,还建立了高质量的回归模型,以寻找更好的催化剂。最后,筛选出的不规则催化剂 Ni0.04Co0.48Zn0.36V0.12Cr2Ox,具有出色的耐硫、耐湿性和长期稳定性(>7000 h,T90 = 345 °C),预示着应用机器学习方法发现目标工艺的 HEO 的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning Accelerated Discovery of Entropy-Stabilized Oxide Catalysts for Catalytic Oxidation.

Machine Learning Accelerated Discovery of Entropy-Stabilized Oxide Catalysts for Catalytic Oxidation.

The catalytic properties of unary to ternary metal oxides were already well experimentally explored, and the left space seems like only high entropy metal oxides (HEOs, element types ≥5). However, the countless element compositions make the trial-and-error method of discovering HEO catalysts impossible. Herein, based on the study of the crystal phase and catalytic performance of the ACr2Ox catalyst system, the strong correlation between the single spinel phase and good catalytic activity of CH4 oxidation was inferred owing to the similar element importance sequences, which were acquired by the corresponding high accuracy machine learning models (cross-validation score >0.7). Furthermore, searching for negative data and choosing the proper training data resulted in high-quality regression models to search for better catalysts. Finally, the screened irregular catalyst Ni0.04Co0.48Zn0.36V0.12Cr2Ox with outstanding sulfur and moisture resistance and long-term stability (>7000 h, T90 = 345 °C) envisions the potential of applying the machine learning method to discover HEOs for target processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信