Ye Tao, Yazhi Luo, Hanwen Hu, Wei Wang, Ying Zhao, Shuhao Wang, Qingyuan Zheng, Tianwei Zhang, Guoqiang Zhang, Jie Li, Ming Ni
{"title":"通过基于人工智能的病理诊断优化假体周围关节感染的临床应用","authors":"Ye Tao, Yazhi Luo, Hanwen Hu, Wei Wang, Ying Zhao, Shuhao Wang, Qingyuan Zheng, Tianwei Zhang, Guoqiang Zhang, Jie Li, Ming Ni","doi":"10.1038/s41746-024-01301-7","DOIUrl":null,"url":null,"abstract":"Periprosthetic joint infection (PJI) is a severe complication after joint replacement surgery that demands precise diagnosis for effective treatment. We enhanced PJI diagnostic accuracy through three steps: (1) developing a self-supervised PJI model with DINO v2 to create a large dataset; (2) comparing multiple intelligent models to identify the best one; and (3) using the optimal model for visual analysis to refine diagnostic practices. The self-supervised model generated 27,724 training samples and achieved a perfect AUC of 1, indicating flawless case differentiation. EfficientNet v2-S outperformed CAMEL2 at the image level, while CAMEL2 was superior at the patient level. By using the weakly supervised PJI model to adjust diagnostic criteria, we reduced the required high-power field diagnoses per slide from five to three. These findings demonstrate AI’s potential to improve the accuracy and standardization of PJI pathology and have significant implications for infectious disease diagnostics.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-12"},"PeriodicalIF":12.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01301-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Clinically applicable optimized periprosthetic joint infection diagnosis via AI based pathology\",\"authors\":\"Ye Tao, Yazhi Luo, Hanwen Hu, Wei Wang, Ying Zhao, Shuhao Wang, Qingyuan Zheng, Tianwei Zhang, Guoqiang Zhang, Jie Li, Ming Ni\",\"doi\":\"10.1038/s41746-024-01301-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periprosthetic joint infection (PJI) is a severe complication after joint replacement surgery that demands precise diagnosis for effective treatment. We enhanced PJI diagnostic accuracy through three steps: (1) developing a self-supervised PJI model with DINO v2 to create a large dataset; (2) comparing multiple intelligent models to identify the best one; and (3) using the optimal model for visual analysis to refine diagnostic practices. The self-supervised model generated 27,724 training samples and achieved a perfect AUC of 1, indicating flawless case differentiation. EfficientNet v2-S outperformed CAMEL2 at the image level, while CAMEL2 was superior at the patient level. By using the weakly supervised PJI model to adjust diagnostic criteria, we reduced the required high-power field diagnoses per slide from five to three. These findings demonstrate AI’s potential to improve the accuracy and standardization of PJI pathology and have significant implications for infectious disease diagnostics.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41746-024-01301-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41746-024-01301-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01301-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Clinically applicable optimized periprosthetic joint infection diagnosis via AI based pathology
Periprosthetic joint infection (PJI) is a severe complication after joint replacement surgery that demands precise diagnosis for effective treatment. We enhanced PJI diagnostic accuracy through three steps: (1) developing a self-supervised PJI model with DINO v2 to create a large dataset; (2) comparing multiple intelligent models to identify the best one; and (3) using the optimal model for visual analysis to refine diagnostic practices. The self-supervised model generated 27,724 training samples and achieved a perfect AUC of 1, indicating flawless case differentiation. EfficientNet v2-S outperformed CAMEL2 at the image level, while CAMEL2 was superior at the patient level. By using the weakly supervised PJI model to adjust diagnostic criteria, we reduced the required high-power field diagnoses per slide from five to three. These findings demonstrate AI’s potential to improve the accuracy and standardization of PJI pathology and have significant implications for infectious disease diagnostics.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.