通过基于人工智能的病理诊断优化假体周围关节感染的临床应用

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Ye Tao, Yazhi Luo, Hanwen Hu, Wei Wang, Ying Zhao, Shuhao Wang, Qingyuan Zheng, Tianwei Zhang, Guoqiang Zhang, Jie Li, Ming Ni
{"title":"通过基于人工智能的病理诊断优化假体周围关节感染的临床应用","authors":"Ye Tao, Yazhi Luo, Hanwen Hu, Wei Wang, Ying Zhao, Shuhao Wang, Qingyuan Zheng, Tianwei Zhang, Guoqiang Zhang, Jie Li, Ming Ni","doi":"10.1038/s41746-024-01301-7","DOIUrl":null,"url":null,"abstract":"Periprosthetic joint infection (PJI) is a severe complication after joint replacement surgery that demands precise diagnosis for effective treatment. We enhanced PJI diagnostic accuracy through three steps: (1) developing a self-supervised PJI model with DINO v2 to create a large dataset; (2) comparing multiple intelligent models to identify the best one; and (3) using the optimal model for visual analysis to refine diagnostic practices. The self-supervised model generated 27,724 training samples and achieved a perfect AUC of 1, indicating flawless case differentiation. EfficientNet v2-S outperformed CAMEL2 at the image level, while CAMEL2 was superior at the patient level. By using the weakly supervised PJI model to adjust diagnostic criteria, we reduced the required high-power field diagnoses per slide from five to three. These findings demonstrate AI’s potential to improve the accuracy and standardization of PJI pathology and have significant implications for infectious disease diagnostics.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-12"},"PeriodicalIF":12.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01301-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Clinically applicable optimized periprosthetic joint infection diagnosis via AI based pathology\",\"authors\":\"Ye Tao, Yazhi Luo, Hanwen Hu, Wei Wang, Ying Zhao, Shuhao Wang, Qingyuan Zheng, Tianwei Zhang, Guoqiang Zhang, Jie Li, Ming Ni\",\"doi\":\"10.1038/s41746-024-01301-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periprosthetic joint infection (PJI) is a severe complication after joint replacement surgery that demands precise diagnosis for effective treatment. We enhanced PJI diagnostic accuracy through three steps: (1) developing a self-supervised PJI model with DINO v2 to create a large dataset; (2) comparing multiple intelligent models to identify the best one; and (3) using the optimal model for visual analysis to refine diagnostic practices. The self-supervised model generated 27,724 training samples and achieved a perfect AUC of 1, indicating flawless case differentiation. EfficientNet v2-S outperformed CAMEL2 at the image level, while CAMEL2 was superior at the patient level. By using the weakly supervised PJI model to adjust diagnostic criteria, we reduced the required high-power field diagnoses per slide from five to three. These findings demonstrate AI’s potential to improve the accuracy and standardization of PJI pathology and have significant implications for infectious disease diagnostics.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41746-024-01301-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41746-024-01301-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01301-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

假体周围关节感染(PJI)是关节置换手术后的一种严重并发症,需要精确诊断才能有效治疗。我们通过三个步骤提高了 PJI 诊断的准确性:(1) 利用 DINO v2 开发自监督 PJI 模型,创建大型数据集;(2) 比较多个智能模型,找出最佳模型;(3) 利用最佳模型进行可视化分析,完善诊断实践。自监督模型生成了 27,724 个训练样本,AUC 达到了完美的 1,表明病例分辨无懈可击。在图像层面,EfficientNet v2-S 的表现优于 CAMEL2,而在患者层面,CAMEL2 则更胜一筹。通过使用弱监督 PJI 模型来调整诊断标准,我们将每张幻灯片所需的高倍视野诊断从五个减少到三个。这些发现证明了人工智能在提高 PJI 病理学的准确性和标准化方面的潜力,对传染病诊断具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Clinically applicable optimized periprosthetic joint infection diagnosis via AI based pathology

Clinically applicable optimized periprosthetic joint infection diagnosis via AI based pathology

Clinically applicable optimized periprosthetic joint infection diagnosis via AI based pathology
Periprosthetic joint infection (PJI) is a severe complication after joint replacement surgery that demands precise diagnosis for effective treatment. We enhanced PJI diagnostic accuracy through three steps: (1) developing a self-supervised PJI model with DINO v2 to create a large dataset; (2) comparing multiple intelligent models to identify the best one; and (3) using the optimal model for visual analysis to refine diagnostic practices. The self-supervised model generated 27,724 training samples and achieved a perfect AUC of 1, indicating flawless case differentiation. EfficientNet v2-S outperformed CAMEL2 at the image level, while CAMEL2 was superior at the patient level. By using the weakly supervised PJI model to adjust diagnostic criteria, we reduced the required high-power field diagnoses per slide from five to three. These findings demonstrate AI’s potential to improve the accuracy and standardization of PJI pathology and have significant implications for infectious disease diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信