通过基于小波的残差神经网络实现 VVC HDR 内编码的 λ 域速率控制

Feng Yuan;Jianjun Lei;Zhaoqing Pan;Bo Peng;Haoran Xie
{"title":"通过基于小波的残差神经网络实现 VVC HDR 内编码的 λ 域速率控制","authors":"Feng Yuan;Jianjun Lei;Zhaoqing Pan;Bo Peng;Haoran Xie","doi":"10.1109/TIP.2024.3484173","DOIUrl":null,"url":null,"abstract":"High dynamic range (HDR) video offers a more realistic visual experience than standard dynamic range (SDR) video, while introducing new challenges to both compression and transmission. Rate control is an effective technology to overcome these challenges, and ensure optimal HDR video delivery. However, the rate control algorithm in the latest video coding standard, versatile video coding (VVC), is tailored to SDR videos, and does not produce well coding results when encoding HDR videos. To address this problem, a data-driven \n<inline-formula> <tex-math>$\\lambda $ </tex-math></inline-formula>\n-domain rate control algorithm is proposed for VVC HDR intra frames in this paper. First, the coding characteristics of HDR intra coding are analyzed, and a piecewise R-\n<inline-formula> <tex-math>$\\lambda $ </tex-math></inline-formula>\n model is proposed to accurately determine the correlation between the rate (R) and the Lagrange parameter \n<inline-formula> <tex-math>$\\lambda $ </tex-math></inline-formula>\n for HDR intra frames. Then, to optimize bit allocation at the coding tree unit (CTU)-level, a wavelet-based residual neural network (WRNN) is developed to accurately predict the parameters of the piecewise R-\n<inline-formula> <tex-math>$\\lambda $ </tex-math></inline-formula>\n model for each CTU. Third, a large-scale HDR dataset is established for training WRNN, which facilitates the applications of deep learning in HDR intra coding. Extensive experimental results show that our proposed HDR intra frame rate control algorithm achieves superior coding results than the state-of-the-art algorithms. The source code of this work will be released at \n<uri>https://github.com/TJU-Videocoding/WRNN.git</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6189-6203"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"λ-Domain Rate Control via Wavelet-Based Residual Neural Network for VVC HDR Intra Coding\",\"authors\":\"Feng Yuan;Jianjun Lei;Zhaoqing Pan;Bo Peng;Haoran Xie\",\"doi\":\"10.1109/TIP.2024.3484173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High dynamic range (HDR) video offers a more realistic visual experience than standard dynamic range (SDR) video, while introducing new challenges to both compression and transmission. Rate control is an effective technology to overcome these challenges, and ensure optimal HDR video delivery. However, the rate control algorithm in the latest video coding standard, versatile video coding (VVC), is tailored to SDR videos, and does not produce well coding results when encoding HDR videos. To address this problem, a data-driven \\n<inline-formula> <tex-math>$\\\\lambda $ </tex-math></inline-formula>\\n-domain rate control algorithm is proposed for VVC HDR intra frames in this paper. First, the coding characteristics of HDR intra coding are analyzed, and a piecewise R-\\n<inline-formula> <tex-math>$\\\\lambda $ </tex-math></inline-formula>\\n model is proposed to accurately determine the correlation between the rate (R) and the Lagrange parameter \\n<inline-formula> <tex-math>$\\\\lambda $ </tex-math></inline-formula>\\n for HDR intra frames. Then, to optimize bit allocation at the coding tree unit (CTU)-level, a wavelet-based residual neural network (WRNN) is developed to accurately predict the parameters of the piecewise R-\\n<inline-formula> <tex-math>$\\\\lambda $ </tex-math></inline-formula>\\n model for each CTU. Third, a large-scale HDR dataset is established for training WRNN, which facilitates the applications of deep learning in HDR intra coding. Extensive experimental results show that our proposed HDR intra frame rate control algorithm achieves superior coding results than the state-of-the-art algorithms. The source code of this work will be released at \\n<uri>https://github.com/TJU-Videocoding/WRNN.git</uri>\\n.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"6189-6203\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10736428/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10736428/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与标准动态范围(SDR)视频相比,高动态范围(HDR)视频提供了更逼真的视觉体验,同时也给压缩和传输带来了新的挑战。速率控制是克服这些挑战并确保最佳 HDR 视频传输的有效技术。然而,最新视频编码标准多功能视频编码(VVC)中的速率控制算法是为 SDR 视频量身定制的,在编码 HDR 视频时不能产生良好的编码效果。针对这一问题,本文提出了一种针对 VVC HDR 内帧的数据驱动 $\lambda $ 域速率控制算法。首先,分析了 HDR 内编码的编码特性,并提出了片式 R- $\lambda $ 模型,以准确确定 HDR 内帧的速率(R)与拉格朗日参数 $\lambda $ 之间的相关性。然后,为了优化编码树单元(CTU)级别的比特分配,开发了基于小波的残差神经网络(WRNN),以准确预测每个 CTU 的片式 R- $/lambda $ 模型参数。第三,建立了用于训练 WRNN 的大规模 HDR 数据集,促进了深度学习在 HDR 内部编码中的应用。大量实验结果表明,我们提出的 HDR 帧内速率控制算法的编码效果优于最先进的算法。这项工作的源代码将在 https://github.com/TJU-Videocoding/WRNN.git 上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
λ-Domain Rate Control via Wavelet-Based Residual Neural Network for VVC HDR Intra Coding
High dynamic range (HDR) video offers a more realistic visual experience than standard dynamic range (SDR) video, while introducing new challenges to both compression and transmission. Rate control is an effective technology to overcome these challenges, and ensure optimal HDR video delivery. However, the rate control algorithm in the latest video coding standard, versatile video coding (VVC), is tailored to SDR videos, and does not produce well coding results when encoding HDR videos. To address this problem, a data-driven $\lambda $ -domain rate control algorithm is proposed for VVC HDR intra frames in this paper. First, the coding characteristics of HDR intra coding are analyzed, and a piecewise R- $\lambda $ model is proposed to accurately determine the correlation between the rate (R) and the Lagrange parameter $\lambda $ for HDR intra frames. Then, to optimize bit allocation at the coding tree unit (CTU)-level, a wavelet-based residual neural network (WRNN) is developed to accurately predict the parameters of the piecewise R- $\lambda $ model for each CTU. Third, a large-scale HDR dataset is established for training WRNN, which facilitates the applications of deep learning in HDR intra coding. Extensive experimental results show that our proposed HDR intra frame rate control algorithm achieves superior coding results than the state-of-the-art algorithms. The source code of this work will be released at https://github.com/TJU-Videocoding/WRNN.git .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信