Nicola De Bernardini, Guido Zampieri, Stefano Campanaro, Johannes Zimmermann, Silvio Waschina, Laura Treu
{"title":"pan-Draft:从多个基因组自动重建物种代表性代谢模型","authors":"Nicola De Bernardini, Guido Zampieri, Stefano Campanaro, Johannes Zimmermann, Silvio Waschina, Laura Treu","doi":"10.1186/s13059-024-03425-1","DOIUrl":null,"url":null,"abstract":"The accurate reconstruction of genome-scale metabolic models (GEMs) for unculturable species poses challenges due to the incomplete and fragmented genetic information typical of metagenome-assembled genomes (MAGs). While existing tools leverage sequence homology from single genomes, this study introduces pan-Draft, a pan-reactome-based approach exploiting recurrent genetic evidence to determine the solid core structure of species-level GEMs. By comparing MAGs clustered at the species-level, pan-Draft addresses the issues due to the incompleteness and contamination of individual genomes, providing high-quality draft models and an accessory reactions catalog supporting the gapfilling step. This approach will improve our comprehension of metabolic functions of uncultured species.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"15 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pan-Draft: automated reconstruction of species-representative metabolic models from multiple genomes\",\"authors\":\"Nicola De Bernardini, Guido Zampieri, Stefano Campanaro, Johannes Zimmermann, Silvio Waschina, Laura Treu\",\"doi\":\"10.1186/s13059-024-03425-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate reconstruction of genome-scale metabolic models (GEMs) for unculturable species poses challenges due to the incomplete and fragmented genetic information typical of metagenome-assembled genomes (MAGs). While existing tools leverage sequence homology from single genomes, this study introduces pan-Draft, a pan-reactome-based approach exploiting recurrent genetic evidence to determine the solid core structure of species-level GEMs. By comparing MAGs clustered at the species-level, pan-Draft addresses the issues due to the incompleteness and contamination of individual genomes, providing high-quality draft models and an accessory reactions catalog supporting the gapfilling step. This approach will improve our comprehension of metabolic functions of uncultured species.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03425-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03425-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
pan-Draft: automated reconstruction of species-representative metabolic models from multiple genomes
The accurate reconstruction of genome-scale metabolic models (GEMs) for unculturable species poses challenges due to the incomplete and fragmented genetic information typical of metagenome-assembled genomes (MAGs). While existing tools leverage sequence homology from single genomes, this study introduces pan-Draft, a pan-reactome-based approach exploiting recurrent genetic evidence to determine the solid core structure of species-level GEMs. By comparing MAGs clustered at the species-level, pan-Draft addresses the issues due to the incompleteness and contamination of individual genomes, providing high-quality draft models and an accessory reactions catalog supporting the gapfilling step. This approach will improve our comprehension of metabolic functions of uncultured species.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.