{"title":"将聚烯烃废料氧化升级再循环为动态交联弹性体","authors":"Yinlong Chang, Yangke Xiao, Minghao Sun, Weiqiang Gao, Liqian Zhu, Qingyue Wang, Wen-Jun Wang, Bo-Geng Li, Pingwei Liu","doi":"10.1021/acs.macromol.4c01869","DOIUrl":null,"url":null,"abstract":"Oxidative cracking of polyolefins into functionalized molecules or oligomers promises the chemical upcycling of plastic wastes. In this work, we develop a novel approach to polyolefin waste upcycling that utilizes low-temperature oxidative cracking combined with dynamic cross-linking to produce recyclable elastomers. High-density polyethylene is oxidized into functionalized oligomers with end carboxyl groups at 110 °C, achieving tunable number-average molecular weights (<i>M</i><sub>n</sub>) ranging from 1500 to 5500 Da at distributions (<i>D̵</i>) between 2.91 and 3.33. These oligomers with high crystallinity directly react with amorphous <i>cis</i>-polybutadiene containing pendant epoxy groups (an oxidized product of <i>cis</i>-polybutadiene) through esterification, forming a dynamically cross-linked elastomer. The elastomer displays a low glass transition temperature (<i>T</i><sub>g</sub>) of approximately −100 °C while maintaining a melting point (<i>T</i><sub>m</sub>) above 80 °C; it showcases a Young′s modulus (<i>E</i>) of 12.0 ± 0.4 MPa, elongation at break (ε) of 600 ± 28%, tensile strength (σ) of 16.4 ± 0.8 MPa, tensile toughness (<i>U</i><sub>T</sub>) of 46.0 ± 3.5 MJ·m<sup>–3</sup>, and a good elasticity with 81.8% elastic recovery in a 10-cycle tensile test, even higher than that of commercial POEs such as POE-8150 of Dow Company. The dynamic ester-bond-based cross-linking enables the elastomer to be reprocessed. Our study introduces an efficient chemical upcycling process for polyolefin wastes, eliminating the need for tedious separation steps of cracking products.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"25 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidative Upcycling of Polyolefin Wastes into the Dynamically Cross-Linked Elastomer\",\"authors\":\"Yinlong Chang, Yangke Xiao, Minghao Sun, Weiqiang Gao, Liqian Zhu, Qingyue Wang, Wen-Jun Wang, Bo-Geng Li, Pingwei Liu\",\"doi\":\"10.1021/acs.macromol.4c01869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxidative cracking of polyolefins into functionalized molecules or oligomers promises the chemical upcycling of plastic wastes. In this work, we develop a novel approach to polyolefin waste upcycling that utilizes low-temperature oxidative cracking combined with dynamic cross-linking to produce recyclable elastomers. High-density polyethylene is oxidized into functionalized oligomers with end carboxyl groups at 110 °C, achieving tunable number-average molecular weights (<i>M</i><sub>n</sub>) ranging from 1500 to 5500 Da at distributions (<i>D̵</i>) between 2.91 and 3.33. These oligomers with high crystallinity directly react with amorphous <i>cis</i>-polybutadiene containing pendant epoxy groups (an oxidized product of <i>cis</i>-polybutadiene) through esterification, forming a dynamically cross-linked elastomer. The elastomer displays a low glass transition temperature (<i>T</i><sub>g</sub>) of approximately −100 °C while maintaining a melting point (<i>T</i><sub>m</sub>) above 80 °C; it showcases a Young′s modulus (<i>E</i>) of 12.0 ± 0.4 MPa, elongation at break (ε) of 600 ± 28%, tensile strength (σ) of 16.4 ± 0.8 MPa, tensile toughness (<i>U</i><sub>T</sub>) of 46.0 ± 3.5 MJ·m<sup>–3</sup>, and a good elasticity with 81.8% elastic recovery in a 10-cycle tensile test, even higher than that of commercial POEs such as POE-8150 of Dow Company. The dynamic ester-bond-based cross-linking enables the elastomer to be reprocessed. Our study introduces an efficient chemical upcycling process for polyolefin wastes, eliminating the need for tedious separation steps of cracking products.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c01869\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01869","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Oxidative Upcycling of Polyolefin Wastes into the Dynamically Cross-Linked Elastomer
Oxidative cracking of polyolefins into functionalized molecules or oligomers promises the chemical upcycling of plastic wastes. In this work, we develop a novel approach to polyolefin waste upcycling that utilizes low-temperature oxidative cracking combined with dynamic cross-linking to produce recyclable elastomers. High-density polyethylene is oxidized into functionalized oligomers with end carboxyl groups at 110 °C, achieving tunable number-average molecular weights (Mn) ranging from 1500 to 5500 Da at distributions (D̵) between 2.91 and 3.33. These oligomers with high crystallinity directly react with amorphous cis-polybutadiene containing pendant epoxy groups (an oxidized product of cis-polybutadiene) through esterification, forming a dynamically cross-linked elastomer. The elastomer displays a low glass transition temperature (Tg) of approximately −100 °C while maintaining a melting point (Tm) above 80 °C; it showcases a Young′s modulus (E) of 12.0 ± 0.4 MPa, elongation at break (ε) of 600 ± 28%, tensile strength (σ) of 16.4 ± 0.8 MPa, tensile toughness (UT) of 46.0 ± 3.5 MJ·m–3, and a good elasticity with 81.8% elastic recovery in a 10-cycle tensile test, even higher than that of commercial POEs such as POE-8150 of Dow Company. The dynamic ester-bond-based cross-linking enables the elastomer to be reprocessed. Our study introduces an efficient chemical upcycling process for polyolefin wastes, eliminating the need for tedious separation steps of cracking products.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.