利用实验研究的 D18:Y6 块状异质结太阳能电池验证新型电子传输层

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Chandrasekar Karuppaiah, Dheebanathan Azhakanantham, Muthamizh Selvamani, Sathish Kumar Perumal, Majed A. Alotaibi, Arul Varman Kesavan
{"title":"利用实验研究的 D18:Y6 块状异质结太阳能电池验证新型电子传输层","authors":"Chandrasekar Karuppaiah,&nbsp;Dheebanathan Azhakanantham,&nbsp;Muthamizh Selvamani,&nbsp;Sathish Kumar Perumal,&nbsp;Majed A. Alotaibi,&nbsp;Arul Varman Kesavan","doi":"10.1002/adts.202400725","DOIUrl":null,"url":null,"abstract":"<p>Organic solar cells (OSC) are showing steady efficiency improvement due to the development in the materials synthesis, sophisticated characterization techniques, in-depth understanding of materials and devices. In the recent years, bulk heterojunction OSC with a non-fullerene acceptor /polymer acceptor shows significant enhancement in efficiency (≈19%). Efficiency of the polymer acceptor OSCs is much higher than the fullerene derivative-based acceptors. In this work, OSC simulations are done using D18 donor and Y6 acceptor bulk heterojunction as a photoactive layer. As a first step, validity of the experimental results for ITO/PEDOT:PSS/D18:Y6/PDIN/Ag structure is done. To investigate efficiency, 2,8,15-trifluoro-3,9,14-tris(heptylsulfonyl)diquinoxalino[2,3-a:2′,3′-c]phenazine (HATNASO2C7-Cs) electron transport layer is validated in place of PDIN in the following device structure, ITO/PEDOT:PSS/D18:Y6/HATNASO2C7-Cs/Ag. Energy level matching of the HATNASO2C7-Cs is well aligned compared with PDIN at the cathode interface. Device simulation optimization are carried out for various photoactive layer, ETL and HTL condition. Highest efficiency of 20.99% is obtained for ITO/PEDOT:PSS/D18:Y6/HATNASO2C7-Cs/Ag when the HATNASO2C7-Cs thickness, bandgap, electron affinity, carrier mobility, and defect density is matched for ≈30 nm, ≈2.8 eV, ≈4.16 eV, ≈2 × 10<sup>−3</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, and 10<sup>14</sup> cm<sup>−3</sup> respectively. Obtained results are discussed in details and results will be helpful for preliminary understanding of the system.</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"8 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validating the Novel Electron Transport Layer with the Use of Experimentally Studied D18:Y6 Bulk Heterojunction Solar Cell\",\"authors\":\"Chandrasekar Karuppaiah,&nbsp;Dheebanathan Azhakanantham,&nbsp;Muthamizh Selvamani,&nbsp;Sathish Kumar Perumal,&nbsp;Majed A. Alotaibi,&nbsp;Arul Varman Kesavan\",\"doi\":\"10.1002/adts.202400725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic solar cells (OSC) are showing steady efficiency improvement due to the development in the materials synthesis, sophisticated characterization techniques, in-depth understanding of materials and devices. In the recent years, bulk heterojunction OSC with a non-fullerene acceptor /polymer acceptor shows significant enhancement in efficiency (≈19%). Efficiency of the polymer acceptor OSCs is much higher than the fullerene derivative-based acceptors. In this work, OSC simulations are done using D18 donor and Y6 acceptor bulk heterojunction as a photoactive layer. As a first step, validity of the experimental results for ITO/PEDOT:PSS/D18:Y6/PDIN/Ag structure is done. To investigate efficiency, 2,8,15-trifluoro-3,9,14-tris(heptylsulfonyl)diquinoxalino[2,3-a:2′,3′-c]phenazine (HATNASO2C7-Cs) electron transport layer is validated in place of PDIN in the following device structure, ITO/PEDOT:PSS/D18:Y6/HATNASO2C7-Cs/Ag. Energy level matching of the HATNASO2C7-Cs is well aligned compared with PDIN at the cathode interface. Device simulation optimization are carried out for various photoactive layer, ETL and HTL condition. Highest efficiency of 20.99% is obtained for ITO/PEDOT:PSS/D18:Y6/HATNASO2C7-Cs/Ag when the HATNASO2C7-Cs thickness, bandgap, electron affinity, carrier mobility, and defect density is matched for ≈30 nm, ≈2.8 eV, ≈4.16 eV, ≈2 × 10<sup>−3</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, and 10<sup>14</sup> cm<sup>−3</sup> respectively. Obtained results are discussed in details and results will be helpful for preliminary understanding of the system.</p>\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adts.202400725\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adts.202400725","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有机太阳能电池(OSC)效率的稳步提高得益于材料合成技术的发展、复杂的表征技术、对材料和器件的深入了解。近年来,使用非富勒烯受体/聚合物受体的体异质结有机太阳能电池的效率显著提高(≈19%)。聚合物受体 OSC 的效率远远高于基于富勒烯衍生物的受体。在这项工作中,使用 D18 给体和 Y6 受体体异质结作为光活性层进行了 OSC 模拟。第一步是验证 ITO/PEDOT:PSS/D18:Y6/PDIN/Ag 结构的实验结果。为了研究效率,在以下器件结构(ITO/PEDOT:PSS/D18:Y6/HATNASO2C7-Cs/Ag)中验证了 2,8,15-三氟-3,9,14-三(庚基磺酰基)二喹喔啉并[2,3-a:2′,3′-c]吩嗪(HATNASO2C7-Cs)电子传输层代替 PDIN。与阴极界面上的 PDIN 相比,HATNASO2C7-Cs 的能级匹配良好。针对不同的光活性层、ETL 和 HTL 条件进行了器件仿真优化。当 HATNASO2C7-Cs 厚度、带隙、电子亲和力、载流子迁移率和缺陷密度分别与 ≈30 nm、≈2.8 eV、≈4.16 eV、≈2 × 10-3 cm2 V-1 s-1 和 1014 cm-3 匹配时,ITO/PEDOT:PSS/D18:Y6/HATNASO2C7-Cs/Ag 的最高效率为 20.99%。详细讨论了获得的结果,这些结果将有助于对系统的初步了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Validating the Novel Electron Transport Layer with the Use of Experimentally Studied D18:Y6 Bulk Heterojunction Solar Cell

Validating the Novel Electron Transport Layer with the Use of Experimentally Studied D18:Y6 Bulk Heterojunction Solar Cell

Organic solar cells (OSC) are showing steady efficiency improvement due to the development in the materials synthesis, sophisticated characterization techniques, in-depth understanding of materials and devices. In the recent years, bulk heterojunction OSC with a non-fullerene acceptor /polymer acceptor shows significant enhancement in efficiency (≈19%). Efficiency of the polymer acceptor OSCs is much higher than the fullerene derivative-based acceptors. In this work, OSC simulations are done using D18 donor and Y6 acceptor bulk heterojunction as a photoactive layer. As a first step, validity of the experimental results for ITO/PEDOT:PSS/D18:Y6/PDIN/Ag structure is done. To investigate efficiency, 2,8,15-trifluoro-3,9,14-tris(heptylsulfonyl)diquinoxalino[2,3-a:2′,3′-c]phenazine (HATNASO2C7-Cs) electron transport layer is validated in place of PDIN in the following device structure, ITO/PEDOT:PSS/D18:Y6/HATNASO2C7-Cs/Ag. Energy level matching of the HATNASO2C7-Cs is well aligned compared with PDIN at the cathode interface. Device simulation optimization are carried out for various photoactive layer, ETL and HTL condition. Highest efficiency of 20.99% is obtained for ITO/PEDOT:PSS/D18:Y6/HATNASO2C7-Cs/Ag when the HATNASO2C7-Cs thickness, bandgap, electron affinity, carrier mobility, and defect density is matched for ≈30 nm, ≈2.8 eV, ≈4.16 eV, ≈2 × 10−3 cm2 V−1 s−1, and 1014 cm−3 respectively. Obtained results are discussed in details and results will be helpful for preliminary understanding of the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信