Rongmei Zhu, Yuxuan Jiang, Bingxin Sun, Wang Zhang, Huan Pang
{"title":"用于锂硫电池中多硫化物选择性捕获和转化的 MOF 衍生 Co-Mo 双金属异质结构","authors":"Rongmei Zhu, Yuxuan Jiang, Bingxin Sun, Wang Zhang, Huan Pang","doi":"10.1039/d4qi01249f","DOIUrl":null,"url":null,"abstract":"Lithium–sulfur batteries (LSBs) are promising energy storage systems, but their practical application is hindered by the polysulfide shuttle effect and slow redox kinetics. To address these challenges, we constructed ZIF-67@CoS<small><sub><em>x</em></sub></small>/MoO<small><sub>3</sub></small> with a core–shell structure and CoS<small><sub><em>x</em></sub></small>/MoO<small><sub>3</sub></small> with a hollow structure as separator-modified materials for LSBs by varying the degree of sulfidation of ZIF-67. The high intrinsic conductivity of CoS<small><sub><em>x</em></sub></small> facilitated ion transfer between the cathode and separator. Additionally, the introduction of MoO<small><sub>3</sub></small> formed a heterogeneous structure with CoS<small><sub><em>x</em></sub></small> that enhanced the adsorption of LiPSs. <em>Via in situ</em> UV-vis and electrochemical impedance spectroscopy testing, we demonstrated the preferred selective trapping and conversion of LiPSs by CoS<small><sub><em>x</em></sub></small>/MoO<small><sub>3</sub></small>. As a result of the synergistic effect of the bimetallic heterogeneous structure, the modified LSB exhibited excellent cycling stability, with a capacity decay rate of only 0.041% after 500 cycles at 1C. Moreover, it achieved a high discharge capacity of 632 mA h g<small><sup>−1</sup></small> at 2C. This work provides a novel concept for MOF-derived heterogeneous structures to be applied in high-performance LSBs.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF-derived Co–Mo bimetallic heterostructures for the selective trapping and conversion of polysulfides in lithium–sulfur batteries\",\"authors\":\"Rongmei Zhu, Yuxuan Jiang, Bingxin Sun, Wang Zhang, Huan Pang\",\"doi\":\"10.1039/d4qi01249f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium–sulfur batteries (LSBs) are promising energy storage systems, but their practical application is hindered by the polysulfide shuttle effect and slow redox kinetics. To address these challenges, we constructed ZIF-67@CoS<small><sub><em>x</em></sub></small>/MoO<small><sub>3</sub></small> with a core–shell structure and CoS<small><sub><em>x</em></sub></small>/MoO<small><sub>3</sub></small> with a hollow structure as separator-modified materials for LSBs by varying the degree of sulfidation of ZIF-67. The high intrinsic conductivity of CoS<small><sub><em>x</em></sub></small> facilitated ion transfer between the cathode and separator. Additionally, the introduction of MoO<small><sub>3</sub></small> formed a heterogeneous structure with CoS<small><sub><em>x</em></sub></small> that enhanced the adsorption of LiPSs. <em>Via in situ</em> UV-vis and electrochemical impedance spectroscopy testing, we demonstrated the preferred selective trapping and conversion of LiPSs by CoS<small><sub><em>x</em></sub></small>/MoO<small><sub>3</sub></small>. As a result of the synergistic effect of the bimetallic heterogeneous structure, the modified LSB exhibited excellent cycling stability, with a capacity decay rate of only 0.041% after 500 cycles at 1C. Moreover, it achieved a high discharge capacity of 632 mA h g<small><sup>−1</sup></small> at 2C. This work provides a novel concept for MOF-derived heterogeneous structures to be applied in high-performance LSBs.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi01249f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi01249f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
MOF-derived Co–Mo bimetallic heterostructures for the selective trapping and conversion of polysulfides in lithium–sulfur batteries
Lithium–sulfur batteries (LSBs) are promising energy storage systems, but their practical application is hindered by the polysulfide shuttle effect and slow redox kinetics. To address these challenges, we constructed ZIF-67@CoSx/MoO3 with a core–shell structure and CoSx/MoO3 with a hollow structure as separator-modified materials for LSBs by varying the degree of sulfidation of ZIF-67. The high intrinsic conductivity of CoSx facilitated ion transfer between the cathode and separator. Additionally, the introduction of MoO3 formed a heterogeneous structure with CoSx that enhanced the adsorption of LiPSs. Via in situ UV-vis and electrochemical impedance spectroscopy testing, we demonstrated the preferred selective trapping and conversion of LiPSs by CoSx/MoO3. As a result of the synergistic effect of the bimetallic heterogeneous structure, the modified LSB exhibited excellent cycling stability, with a capacity decay rate of only 0.041% after 500 cycles at 1C. Moreover, it achieved a high discharge capacity of 632 mA h g−1 at 2C. This work provides a novel concept for MOF-derived heterogeneous structures to be applied in high-performance LSBs.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.