Pietro Tizzani , José Fernández , Andrea Vitale , Joaquín Escayo , Andrea Barone , Raffaele Castaldo , Susi Pepe , Vincenzo De Novellis , Giuseppe Solaro , Antonio Pepe , Anna Tramelli , Zhongbo Hu , Sergey V. Samsonov , Isabel Vigo , Kristy F. Tiampo , Antonio G. Camacho
{"title":"坎皮弗莱格雷火山口城市地区下方火山馈源系统的四维成像","authors":"Pietro Tizzani , José Fernández , Andrea Vitale , Joaquín Escayo , Andrea Barone , Raffaele Castaldo , Susi Pepe , Vincenzo De Novellis , Giuseppe Solaro , Antonio Pepe , Anna Tramelli , Zhongbo Hu , Sergey V. Samsonov , Isabel Vigo , Kristy F. Tiampo , Antonio G. Camacho","doi":"10.1016/j.rse.2024.114480","DOIUrl":null,"url":null,"abstract":"<div><div>This paper describes an approach to analyze ground deformation data collected by InSAR (Interferometric Synthetic Aperture Radar) imaging the volcano feeding system (VFS) beneath a caldera. The approach is applied to the Campi Flegrei caldera in southern Italy, a densely populated area at high risk for volcanic eruption. The method is a 4D tomographic inversion that considers a combination of 3D pressure sources and dislocations (strike-slip, dip-slip and tensile) acting simultaneously. This is in contrast to traditional methods that assume a priori geometries and type for the volcanic source. Another novelty is that we carry out a time-series analysis of multifrequency InSAR displacement data. The analysis of these multiplatform and multifrequency InSAR data from 2011 to 2022 reveals an inflating source at a depth of 3–4 km that is interpreted as a pressurized magmatic intrusion. The source broadens and migrates laterally over time, with a possible new magmatic pulse arriving in 2018–2020. The model also identifies a shallow region (at 400 m depth) that may be feeding fumaroles in the area. The analysis also reveals a zone of weakness (dip-slip) that could influence the path of rising magma. This method provides a more detailed dynamic 4 - dimensional image of the VFS than previously possible and could be used to improve hazard assessments in active volcanic areas.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114480"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4D imaging of the volcano feeding system beneath the urban area of the Campi Flegrei caldera\",\"authors\":\"Pietro Tizzani , José Fernández , Andrea Vitale , Joaquín Escayo , Andrea Barone , Raffaele Castaldo , Susi Pepe , Vincenzo De Novellis , Giuseppe Solaro , Antonio Pepe , Anna Tramelli , Zhongbo Hu , Sergey V. Samsonov , Isabel Vigo , Kristy F. Tiampo , Antonio G. Camacho\",\"doi\":\"10.1016/j.rse.2024.114480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper describes an approach to analyze ground deformation data collected by InSAR (Interferometric Synthetic Aperture Radar) imaging the volcano feeding system (VFS) beneath a caldera. The approach is applied to the Campi Flegrei caldera in southern Italy, a densely populated area at high risk for volcanic eruption. The method is a 4D tomographic inversion that considers a combination of 3D pressure sources and dislocations (strike-slip, dip-slip and tensile) acting simultaneously. This is in contrast to traditional methods that assume a priori geometries and type for the volcanic source. Another novelty is that we carry out a time-series analysis of multifrequency InSAR displacement data. The analysis of these multiplatform and multifrequency InSAR data from 2011 to 2022 reveals an inflating source at a depth of 3–4 km that is interpreted as a pressurized magmatic intrusion. The source broadens and migrates laterally over time, with a possible new magmatic pulse arriving in 2018–2020. The model also identifies a shallow region (at 400 m depth) that may be feeding fumaroles in the area. The analysis also reveals a zone of weakness (dip-slip) that could influence the path of rising magma. This method provides a more detailed dynamic 4 - dimensional image of the VFS than previously possible and could be used to improve hazard assessments in active volcanic areas.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"315 \",\"pages\":\"Article 114480\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425724005066\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724005066","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
4D imaging of the volcano feeding system beneath the urban area of the Campi Flegrei caldera
This paper describes an approach to analyze ground deformation data collected by InSAR (Interferometric Synthetic Aperture Radar) imaging the volcano feeding system (VFS) beneath a caldera. The approach is applied to the Campi Flegrei caldera in southern Italy, a densely populated area at high risk for volcanic eruption. The method is a 4D tomographic inversion that considers a combination of 3D pressure sources and dislocations (strike-slip, dip-slip and tensile) acting simultaneously. This is in contrast to traditional methods that assume a priori geometries and type for the volcanic source. Another novelty is that we carry out a time-series analysis of multifrequency InSAR displacement data. The analysis of these multiplatform and multifrequency InSAR data from 2011 to 2022 reveals an inflating source at a depth of 3–4 km that is interpreted as a pressurized magmatic intrusion. The source broadens and migrates laterally over time, with a possible new magmatic pulse arriving in 2018–2020. The model also identifies a shallow region (at 400 m depth) that may be feeding fumaroles in the area. The analysis also reveals a zone of weakness (dip-slip) that could influence the path of rising magma. This method provides a more detailed dynamic 4 - dimensional image of the VFS than previously possible and could be used to improve hazard assessments in active volcanic areas.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.