{"title":"用部分贯入式石柱和垂直排水沟加固复合地基的分析解决方案","authors":"Chuanxun Li, Xiangzong Lu","doi":"10.1002/nag.3874","DOIUrl":null,"url":null,"abstract":"When stone columns or vertical drains are applied to improve soils, it is common to face situations where the soft soil layer is too thick to be penetrated completely. Although consolidation theories for soils with partially penetrated vertical drains or stone columns are comprehensive, consolidation theories for impenetrable composite foundations containing both two types of drainage bodies have been few reported in the existing literature. Equations governing the consolidation of the reinforced zone and unreinforced zone are established, respectively. Analytical solutions for consolidation of such composite foundations are obtained under permeable top with impermeable bottom (PTIB) and permeable top with permeable bottom (PTPB), respectively. The correctness of proposed solutions is verified by comparing them with existing solutions and finite element analyses. Then, extensive calculations are performed to analyze the consolidation behaviors at different penetration rates, including the total average consolidation degree defined by strain or stress and the distribution of the average excess pore water pressure (EPWP) along the depth. The results show that the total average consolidation rate increases as the penetration rate increases; for some composite foundations with a low penetration rate, the consolidation of the unreinforced zone cannot be ignored. Finally, according to the geological parameters provided by an actual project, the obtained solution is used to calculate the settlement, and the results obtained by the proposed solution are in reasonable agreement with the measured data.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"44 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Solutions for Composite Foundations Reinforced by Partially Penetrated Stone Columns and Vertical Drains\",\"authors\":\"Chuanxun Li, Xiangzong Lu\",\"doi\":\"10.1002/nag.3874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When stone columns or vertical drains are applied to improve soils, it is common to face situations where the soft soil layer is too thick to be penetrated completely. Although consolidation theories for soils with partially penetrated vertical drains or stone columns are comprehensive, consolidation theories for impenetrable composite foundations containing both two types of drainage bodies have been few reported in the existing literature. Equations governing the consolidation of the reinforced zone and unreinforced zone are established, respectively. Analytical solutions for consolidation of such composite foundations are obtained under permeable top with impermeable bottom (PTIB) and permeable top with permeable bottom (PTPB), respectively. The correctness of proposed solutions is verified by comparing them with existing solutions and finite element analyses. Then, extensive calculations are performed to analyze the consolidation behaviors at different penetration rates, including the total average consolidation degree defined by strain or stress and the distribution of the average excess pore water pressure (EPWP) along the depth. The results show that the total average consolidation rate increases as the penetration rate increases; for some composite foundations with a low penetration rate, the consolidation of the unreinforced zone cannot be ignored. Finally, according to the geological parameters provided by an actual project, the obtained solution is used to calculate the settlement, and the results obtained by the proposed solution are in reasonable agreement with the measured data.\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/nag.3874\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3874","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Analytical Solutions for Composite Foundations Reinforced by Partially Penetrated Stone Columns and Vertical Drains
When stone columns or vertical drains are applied to improve soils, it is common to face situations where the soft soil layer is too thick to be penetrated completely. Although consolidation theories for soils with partially penetrated vertical drains or stone columns are comprehensive, consolidation theories for impenetrable composite foundations containing both two types of drainage bodies have been few reported in the existing literature. Equations governing the consolidation of the reinforced zone and unreinforced zone are established, respectively. Analytical solutions for consolidation of such composite foundations are obtained under permeable top with impermeable bottom (PTIB) and permeable top with permeable bottom (PTPB), respectively. The correctness of proposed solutions is verified by comparing them with existing solutions and finite element analyses. Then, extensive calculations are performed to analyze the consolidation behaviors at different penetration rates, including the total average consolidation degree defined by strain or stress and the distribution of the average excess pore water pressure (EPWP) along the depth. The results show that the total average consolidation rate increases as the penetration rate increases; for some composite foundations with a low penetration rate, the consolidation of the unreinforced zone cannot be ignored. Finally, according to the geological parameters provided by an actual project, the obtained solution is used to calculate the settlement, and the results obtained by the proposed solution are in reasonable agreement with the measured data.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.