{"title":"多期时间分式波方程在贝索夫类型空间中的拟合分析","authors":"Yubin Liu, Li Peng","doi":"10.1007/s13540-024-00348-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the initial value problems for multi-term time-fractional wave equations in the framework of Besov spaces, which can be described the Couette flow of viscoelastic fluid. Considering the initial data in Besov spaces, we obtain some results about the local well-posedness and the blow-up of mild solutions for the proposed problem. Further, we extend these results to Besov–Morrey spaces.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The well-posedness analysis in Besov-type spaces for multi-term time-fractional wave equations\",\"authors\":\"Yubin Liu, Li Peng\",\"doi\":\"10.1007/s13540-024-00348-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the initial value problems for multi-term time-fractional wave equations in the framework of Besov spaces, which can be described the Couette flow of viscoelastic fluid. Considering the initial data in Besov spaces, we obtain some results about the local well-posedness and the blow-up of mild solutions for the proposed problem. Further, we extend these results to Besov–Morrey spaces.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00348-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00348-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The well-posedness analysis in Besov-type spaces for multi-term time-fractional wave equations
In this paper, we consider the initial value problems for multi-term time-fractional wave equations in the framework of Besov spaces, which can be described the Couette flow of viscoelastic fluid. Considering the initial data in Besov spaces, we obtain some results about the local well-posedness and the blow-up of mild solutions for the proposed problem. Further, we extend these results to Besov–Morrey spaces.