Alexander Ryjov, Vagan Kazaryan, Andrey Golub, Alina Egorova
{"title":"增强时尚创意:将生成模型与混合智能相结合。","authors":"Alexander Ryjov, Vagan Kazaryan, Andrey Golub, Alina Egorova","doi":"10.3389/frai.2024.1460217","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study explores the role and potential of large language models (LLMs) and generative intelligence in the fashion industry. These technologies are reshaping traditional methods of design, production, and retail, leading to innovation, product personalization, and enhanced customer interaction.</p><p><strong>Methods: </strong>Our research analyzes the current applications and limitations of LLMs in fashion, identifying challenges such as the need for better spatial understanding and design detail processing. We propose a hybrid intelligence approach to address these issues.</p><p><strong>Results: </strong>We find that while LLMs offer significant potential, their integration into fashion workflows requires improvements in understanding spatial parameters and creating tools for iterative design.</p><p><strong>Discussion: </strong>Future research should focus on overcoming these limitations and developing hybrid intelligence solutions to maximize the potential of LLMs in the fashion industry.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468243/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards enhanced creativity in fashion: integrating generative models with hybrid intelligence.\",\"authors\":\"Alexander Ryjov, Vagan Kazaryan, Andrey Golub, Alina Egorova\",\"doi\":\"10.3389/frai.2024.1460217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>This study explores the role and potential of large language models (LLMs) and generative intelligence in the fashion industry. These technologies are reshaping traditional methods of design, production, and retail, leading to innovation, product personalization, and enhanced customer interaction.</p><p><strong>Methods: </strong>Our research analyzes the current applications and limitations of LLMs in fashion, identifying challenges such as the need for better spatial understanding and design detail processing. We propose a hybrid intelligence approach to address these issues.</p><p><strong>Results: </strong>We find that while LLMs offer significant potential, their integration into fashion workflows requires improvements in understanding spatial parameters and creating tools for iterative design.</p><p><strong>Discussion: </strong>Future research should focus on overcoming these limitations and developing hybrid intelligence solutions to maximize the potential of LLMs in the fashion industry.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468243/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1460217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1460217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Towards enhanced creativity in fashion: integrating generative models with hybrid intelligence.
Introduction: This study explores the role and potential of large language models (LLMs) and generative intelligence in the fashion industry. These technologies are reshaping traditional methods of design, production, and retail, leading to innovation, product personalization, and enhanced customer interaction.
Methods: Our research analyzes the current applications and limitations of LLMs in fashion, identifying challenges such as the need for better spatial understanding and design detail processing. We propose a hybrid intelligence approach to address these issues.
Results: We find that while LLMs offer significant potential, their integration into fashion workflows requires improvements in understanding spatial parameters and creating tools for iterative design.
Discussion: Future research should focus on overcoming these limitations and developing hybrid intelligence solutions to maximize the potential of LLMs in the fashion industry.