[放射学中可解释且安全的人工智能]。

Journal of the Korean Society of Radiology Pub Date : 2024-09-01 Epub Date: 2024-09-27 DOI:10.3348/jksr.2024.0118
Synho Do
{"title":"[放射学中可解释且安全的人工智能]。","authors":"Synho Do","doi":"10.3348/jksr.2024.0118","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is transforming radiology with improved diagnostic accuracy and efficiency, but prediction uncertainty remains a critical challenge. This review examines key sources of uncertainty-out-of-distribution, aleatoric, and model uncertainties-and highlights the importance of independent confidence metrics and explainable AI for safe integration. Independent confidence metrics assess the reliability of AI predictions, while explainable AI provides transparency, enhancing collaboration between AI and radiologists. The development of zero-error tolerance models, designed to minimize errors, sets new standards for safety. Addressing these challenges will enable AI to become a trusted partner in radiology, advancing care standards and patient outcomes.</p>","PeriodicalId":101329,"journal":{"name":"Journal of the Korean Society of Radiology","volume":"85 5","pages":"834-847"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473981/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Explainable & Safe Artificial Intelligence in Radiology].\",\"authors\":\"Synho Do\",\"doi\":\"10.3348/jksr.2024.0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) is transforming radiology with improved diagnostic accuracy and efficiency, but prediction uncertainty remains a critical challenge. This review examines key sources of uncertainty-out-of-distribution, aleatoric, and model uncertainties-and highlights the importance of independent confidence metrics and explainable AI for safe integration. Independent confidence metrics assess the reliability of AI predictions, while explainable AI provides transparency, enhancing collaboration between AI and radiologists. The development of zero-error tolerance models, designed to minimize errors, sets new standards for safety. Addressing these challenges will enable AI to become a trusted partner in radiology, advancing care standards and patient outcomes.</p>\",\"PeriodicalId\":101329,\"journal\":{\"name\":\"Journal of the Korean Society of Radiology\",\"volume\":\"85 5\",\"pages\":\"834-847\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473981/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society of Radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3348/jksr.2024.0118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3348/jksr.2024.0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)正在改变放射学,提高诊断的准确性和效率,但预测的不确定性仍然是一个严峻的挑战。本综述探讨了不确定性的主要来源--分布不确定性、估计不确定性和模型不确定性,并强调了独立置信度指标和可解释人工智能对于安全整合的重要性。独立置信度评估人工智能预测的可靠性,而可解释的人工智能提供了透明度,加强了人工智能和放射科医生之间的合作。零误差容限模型的开发旨在最大限度地减少误差,为安全设定了新标准。应对这些挑战将使人工智能成为放射学领域值得信赖的合作伙伴,从而提高护理标准和患者疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Explainable & Safe Artificial Intelligence in Radiology].

Artificial intelligence (AI) is transforming radiology with improved diagnostic accuracy and efficiency, but prediction uncertainty remains a critical challenge. This review examines key sources of uncertainty-out-of-distribution, aleatoric, and model uncertainties-and highlights the importance of independent confidence metrics and explainable AI for safe integration. Independent confidence metrics assess the reliability of AI predictions, while explainable AI provides transparency, enhancing collaboration between AI and radiologists. The development of zero-error tolerance models, designed to minimize errors, sets new standards for safety. Addressing these challenges will enable AI to become a trusted partner in radiology, advancing care standards and patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信