非快速眼动睡眠慢波活动特征与患有阻塞性睡眠呼吸暂停的老年人体内淀粉样蛋白的积累有关。

IF 4.1 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2024-10-07 eCollection Date: 2024-01-01 DOI:10.1093/braincomms/fcae354
Diego Z Carvalho, Vaclav Kremen, Filip Mivalt, Erik K St Louis, Stuart J McCarter, Jan Bukartyk, Scott A Przybelski, Michael G Kamykowski, Anthony J Spychalla, Mary M Machulda, Bradley F Boeve, Ronald C Petersen, Clifford R Jack, Val J Lowe, Jonathan Graff-Radford, Gregory A Worrell, Virend K Somers, Andrew W Varga, Prashanthi Vemuri
{"title":"非快速眼动睡眠慢波活动特征与患有阻塞性睡眠呼吸暂停的老年人体内淀粉样蛋白的积累有关。","authors":"Diego Z Carvalho, Vaclav Kremen, Filip Mivalt, Erik K St Louis, Stuart J McCarter, Jan Bukartyk, Scott A Przybelski, Michael G Kamykowski, Anthony J Spychalla, Mary M Machulda, Bradley F Boeve, Ronald C Petersen, Clifford R Jack, Val J Lowe, Jonathan Graff-Radford, Gregory A Worrell, Virend K Somers, Andrew W Varga, Prashanthi Vemuri","doi":"10.1093/braincomms/fcae354","DOIUrl":null,"url":null,"abstract":"<p><p>Obstructive sleep apnoea (OSA) is associated with an increased risk for cognitive impairment and dementia, which likely involves Alzheimer's disease pathology. Non-rapid eye movement slow-wave activity (SWA) has been implicated in amyloid clearance, but it has not been studied in the context of longitudinal amyloid accumulation in OSA. This longitudinal retrospective study aims to investigate the relationship between polysomnographic and electrophysiological SWA features and amyloid accumulation. From the Mayo Clinic Study of Aging cohort, we identified 71 participants ≥60 years old with OSA (mean baseline age = 72.9 ± 7.5 years, 60.6% male, 93% cognitively unimpaired) who had at least 2 consecutive Amyloid Pittsburgh Compound B (PiB)-PET scans and a polysomnographic study within 5 years of the baseline scan and before the second scan. Annualized PiB-PET accumulation [global ΔPiB(log)/year] was estimated by the difference between the second and first log-transformed global PiB-PET uptake estimations divided by the interval between scans (years). Sixty-four participants were included in SWA analysis. SWA was characterized by the mean relative spectral power density (%) in slow oscillation (SO: 0.5-0.9 Hz) and delta (1-3.9 Hz) frequency bands and by their downslopes (SO-slope and delta-slope, respectively) during the diagnostic portion of polysomnography. We fit linear regression models to test for associations among global ΔPiB(log)/year, SWA features (mean SO% and delta% or mean SO-slope and delta-slope), and OSA severity markers, after adjusting for age at baseline PiB-PET, <i>APOE ɛ4</i> and baseline amyloid positivity. For 1 SD increase in SO% and SO-slope, global ΔPiB(log)/year increased by 0.0033 (95% CI: 0.0001; 0.0064, <i>P</i> = 0.042) and 0.0069 (95% CI: 0.0009; 0.0129, <i>P</i> = 0.026), which were comparable to 32% and 59% of the effect size associated with baseline amyloid positivity, respectively. Delta-slope was associated with a reduction in global ΔPiB(log)/year by -0.0082 (95% CI: -0.0143; -0.0021, <i>P</i> = 0.009). Sleep apnoea severity was not associated with amyloid accumulation. Regional associations were stronger in the pre-frontal region. Both slow-wave slopes had more significant and widespread regional associations. Annualized PiB-PET accumulation was positively associated with SO and SO-slope, which may reflect altered sleep homeostasis due to increased homeostatic pressure in the setting of unmet sleep needs, increased synaptic strength, and/or hyper-excitability in OSA. Delta-slope was inversely associated with PiB-PET accumulation, suggesting it may represent residual physiological activity. Further investigation of SWA dynamics in the presence of sleep disorders before and after treatment is necessary for understanding the relationship between amyloid accumulation and SWA physiology.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"6 5","pages":"fcae354"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487750/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-rapid eye movement sleep slow-wave activity features are associated with amyloid accumulation in older adults with obstructive sleep apnoea.\",\"authors\":\"Diego Z Carvalho, Vaclav Kremen, Filip Mivalt, Erik K St Louis, Stuart J McCarter, Jan Bukartyk, Scott A Przybelski, Michael G Kamykowski, Anthony J Spychalla, Mary M Machulda, Bradley F Boeve, Ronald C Petersen, Clifford R Jack, Val J Lowe, Jonathan Graff-Radford, Gregory A Worrell, Virend K Somers, Andrew W Varga, Prashanthi Vemuri\",\"doi\":\"10.1093/braincomms/fcae354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obstructive sleep apnoea (OSA) is associated with an increased risk for cognitive impairment and dementia, which likely involves Alzheimer's disease pathology. Non-rapid eye movement slow-wave activity (SWA) has been implicated in amyloid clearance, but it has not been studied in the context of longitudinal amyloid accumulation in OSA. This longitudinal retrospective study aims to investigate the relationship between polysomnographic and electrophysiological SWA features and amyloid accumulation. From the Mayo Clinic Study of Aging cohort, we identified 71 participants ≥60 years old with OSA (mean baseline age = 72.9 ± 7.5 years, 60.6% male, 93% cognitively unimpaired) who had at least 2 consecutive Amyloid Pittsburgh Compound B (PiB)-PET scans and a polysomnographic study within 5 years of the baseline scan and before the second scan. Annualized PiB-PET accumulation [global ΔPiB(log)/year] was estimated by the difference between the second and first log-transformed global PiB-PET uptake estimations divided by the interval between scans (years). Sixty-four participants were included in SWA analysis. SWA was characterized by the mean relative spectral power density (%) in slow oscillation (SO: 0.5-0.9 Hz) and delta (1-3.9 Hz) frequency bands and by their downslopes (SO-slope and delta-slope, respectively) during the diagnostic portion of polysomnography. We fit linear regression models to test for associations among global ΔPiB(log)/year, SWA features (mean SO% and delta% or mean SO-slope and delta-slope), and OSA severity markers, after adjusting for age at baseline PiB-PET, <i>APOE ɛ4</i> and baseline amyloid positivity. For 1 SD increase in SO% and SO-slope, global ΔPiB(log)/year increased by 0.0033 (95% CI: 0.0001; 0.0064, <i>P</i> = 0.042) and 0.0069 (95% CI: 0.0009; 0.0129, <i>P</i> = 0.026), which were comparable to 32% and 59% of the effect size associated with baseline amyloid positivity, respectively. Delta-slope was associated with a reduction in global ΔPiB(log)/year by -0.0082 (95% CI: -0.0143; -0.0021, <i>P</i> = 0.009). Sleep apnoea severity was not associated with amyloid accumulation. Regional associations were stronger in the pre-frontal region. Both slow-wave slopes had more significant and widespread regional associations. Annualized PiB-PET accumulation was positively associated with SO and SO-slope, which may reflect altered sleep homeostasis due to increased homeostatic pressure in the setting of unmet sleep needs, increased synaptic strength, and/or hyper-excitability in OSA. Delta-slope was inversely associated with PiB-PET accumulation, suggesting it may represent residual physiological activity. Further investigation of SWA dynamics in the presence of sleep disorders before and after treatment is necessary for understanding the relationship between amyloid accumulation and SWA physiology.</p>\",\"PeriodicalId\":93915,\"journal\":{\"name\":\"Brain communications\",\"volume\":\"6 5\",\"pages\":\"fcae354\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487750/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/braincomms/fcae354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcae354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阻塞性睡眠呼吸暂停(OSA)与认知障碍和痴呆的风险增加有关,这很可能与阿尔茨海默病的病理有关。非快速眼动慢波活动(SWA)被认为与淀粉样蛋白清除有关,但尚未在OSA淀粉样蛋白纵向积累的背景下对其进行研究。这项纵向回顾性研究旨在探讨多导睡眠图和电生理SWA特征与淀粉样蛋白积累之间的关系。我们从梅奥诊所老龄化研究队列中确定了 71 名年龄≥60 岁的 OSA 患者(平均基线年龄 = 72.9 ± 7.5 岁,60.6% 为男性,93% 认知功能无障碍),他们在基线扫描后 5 年内和第二次扫描前至少连续接受了两次淀粉样匹兹堡化合物 B (PiB) -PET 扫描和一次多导睡眠图研究。年化 PiB-PET 积累[全球 ΔPiB(对数)/年]是根据第二次和第一次对数变换后的全球 PiB-PET 摄取估算值之差除以扫描间隔(年)估算得出的。64 名参与者被纳入 SWA 分析。在多导睡眠图的诊断部分,SWA 的特征是慢振荡(SO:0.5-0.9 Hz)和 delta(1-3.9 Hz)频带的平均相对频谱功率密度(%)及其下坡(分别为 SO 坡和 delta 坡)。在调整基线 PiB-PET、APOE ɛ4和基线淀粉样蛋白阳性时的年龄后,我们拟合了线性回归模型,以检验全球ΔPiB(对数)/年、SWA特征(平均SO%和delta%或平均SO-斜率和delta-斜率)和OSA严重程度指标之间的关联。SO%和SO-斜率每增加1 SD,全球ΔPiB(log)/年分别增加0.0033 (95% CI: 0.0001; 0.0064, P = 0.042)和0.0069 (95% CI: 0.0009; 0.0129, P = 0.026),分别相当于基线淀粉样蛋白阳性相关效应大小的32%和59%。德尔塔斜率与全球ΔPiB(对数)/年减少-0.0082(95% CI:-0.0143;-0.0021,P = 0.009)相关。睡眠呼吸暂停的严重程度与淀粉样蛋白的积累无关。前额叶区域的相关性更强。两种慢波斜率的区域关联更为显著和广泛。年化PiB-PET累积量与SO和SO-斜率呈正相关,这可能反映了OSA患者在睡眠需求未得到满足、突触强度增加和/或过度兴奋的情况下,由于平衡压力增加而导致的睡眠平衡改变。德尔塔斜率与 PiB-PET 的积累成反比,表明它可能代表了残余的生理活动。为了了解淀粉样蛋白积累与SWA生理学之间的关系,有必要对治疗前后存在睡眠障碍时的SWA动态进行进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-rapid eye movement sleep slow-wave activity features are associated with amyloid accumulation in older adults with obstructive sleep apnoea.

Obstructive sleep apnoea (OSA) is associated with an increased risk for cognitive impairment and dementia, which likely involves Alzheimer's disease pathology. Non-rapid eye movement slow-wave activity (SWA) has been implicated in amyloid clearance, but it has not been studied in the context of longitudinal amyloid accumulation in OSA. This longitudinal retrospective study aims to investigate the relationship between polysomnographic and electrophysiological SWA features and amyloid accumulation. From the Mayo Clinic Study of Aging cohort, we identified 71 participants ≥60 years old with OSA (mean baseline age = 72.9 ± 7.5 years, 60.6% male, 93% cognitively unimpaired) who had at least 2 consecutive Amyloid Pittsburgh Compound B (PiB)-PET scans and a polysomnographic study within 5 years of the baseline scan and before the second scan. Annualized PiB-PET accumulation [global ΔPiB(log)/year] was estimated by the difference between the second and first log-transformed global PiB-PET uptake estimations divided by the interval between scans (years). Sixty-four participants were included in SWA analysis. SWA was characterized by the mean relative spectral power density (%) in slow oscillation (SO: 0.5-0.9 Hz) and delta (1-3.9 Hz) frequency bands and by their downslopes (SO-slope and delta-slope, respectively) during the diagnostic portion of polysomnography. We fit linear regression models to test for associations among global ΔPiB(log)/year, SWA features (mean SO% and delta% or mean SO-slope and delta-slope), and OSA severity markers, after adjusting for age at baseline PiB-PET, APOE ɛ4 and baseline amyloid positivity. For 1 SD increase in SO% and SO-slope, global ΔPiB(log)/year increased by 0.0033 (95% CI: 0.0001; 0.0064, P = 0.042) and 0.0069 (95% CI: 0.0009; 0.0129, P = 0.026), which were comparable to 32% and 59% of the effect size associated with baseline amyloid positivity, respectively. Delta-slope was associated with a reduction in global ΔPiB(log)/year by -0.0082 (95% CI: -0.0143; -0.0021, P = 0.009). Sleep apnoea severity was not associated with amyloid accumulation. Regional associations were stronger in the pre-frontal region. Both slow-wave slopes had more significant and widespread regional associations. Annualized PiB-PET accumulation was positively associated with SO and SO-slope, which may reflect altered sleep homeostasis due to increased homeostatic pressure in the setting of unmet sleep needs, increased synaptic strength, and/or hyper-excitability in OSA. Delta-slope was inversely associated with PiB-PET accumulation, suggesting it may represent residual physiological activity. Further investigation of SWA dynamics in the presence of sleep disorders before and after treatment is necessary for understanding the relationship between amyloid accumulation and SWA physiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信