{"title":"虫草素通过改善肠道微生物群组成以及调节Th1/Th2和Th17/Treg平衡,减轻右旋糖酐硫酸钠诱发的结肠炎。","authors":"Zhilin Liu, Shaoxian Wu, Wenting Zhang, Hengwei Cui, Jingfeng Zhang, Xuan Yin, Xiao Zheng, Tao Shen, Hanjie Ying, Lujun Chen, Haitao Wang, Jingting Jiang","doi":"10.1016/j.biopha.2024.117394","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Imbalances in Th1/Th2 and Th17/Treg immune axes, coupled with disruptions in the gut microbiota (GM), play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD). Cordycepin, a natural anti-inflammatory compound, holds promise in mitigating IBD by rebalancing these immune axes in conjunction with modulating the GM. The aim of this experiment is to investigate the potential of cordycepin in mitigating enteritis and elucidate the underlying mechanisms associated with its ameliorative effects on enteritis.</p><p><strong>Methods: </strong>On the day of inducing experimental colitis with Dextran Sulfate Sodium (DSS), mice in the DSS + Cordycepin and Cordycepin groups received 50 mg/kg/day Cordycepin via intra-gastric administration (i.g.) for seven consecutive days, respectively. Mice in the DSS and control groups were treated with equal volumes of saline. On day 8, all mice were euthanized under pentobarbital sodium anesthesia.</p><p><strong>Results: </strong>In a DSS-induced colitis mouse model, Cordycepin treatment led to a significant reduction in the disease activity index (DAI), splenic weight, and colonic pathological injury while simultaneously improving body weight and colonic length. Furthermore, it positively impacted GM composition, resulting in decreased Th1 and Th17 cells, alongside an increase in Th2 and Treg cells. The contents of the mouse colon were extracted for microbial community analysis. Mouse blood was prepared into a single-cell suspension, and flow cytometry was used to assess the expressio of Treg, Th17, Th1, and Th2 immune cells.</p><p><strong>Conclusions: </strong>These results underscored the effective intervention of cordycepin in ameliorating DSS-induced colitis by harmonizing the interplay between GM and immune homeostasis.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117394"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cordycepin mitigates dextran sulfate sodium-induced colitis through improving gut microbiota composition and modulating Th1/Th2 and Th17/Treg balance.\",\"authors\":\"Zhilin Liu, Shaoxian Wu, Wenting Zhang, Hengwei Cui, Jingfeng Zhang, Xuan Yin, Xiao Zheng, Tao Shen, Hanjie Ying, Lujun Chen, Haitao Wang, Jingting Jiang\",\"doi\":\"10.1016/j.biopha.2024.117394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Imbalances in Th1/Th2 and Th17/Treg immune axes, coupled with disruptions in the gut microbiota (GM), play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD). Cordycepin, a natural anti-inflammatory compound, holds promise in mitigating IBD by rebalancing these immune axes in conjunction with modulating the GM. The aim of this experiment is to investigate the potential of cordycepin in mitigating enteritis and elucidate the underlying mechanisms associated with its ameliorative effects on enteritis.</p><p><strong>Methods: </strong>On the day of inducing experimental colitis with Dextran Sulfate Sodium (DSS), mice in the DSS + Cordycepin and Cordycepin groups received 50 mg/kg/day Cordycepin via intra-gastric administration (i.g.) for seven consecutive days, respectively. Mice in the DSS and control groups were treated with equal volumes of saline. On day 8, all mice were euthanized under pentobarbital sodium anesthesia.</p><p><strong>Results: </strong>In a DSS-induced colitis mouse model, Cordycepin treatment led to a significant reduction in the disease activity index (DAI), splenic weight, and colonic pathological injury while simultaneously improving body weight and colonic length. Furthermore, it positively impacted GM composition, resulting in decreased Th1 and Th17 cells, alongside an increase in Th2 and Treg cells. The contents of the mouse colon were extracted for microbial community analysis. Mouse blood was prepared into a single-cell suspension, and flow cytometry was used to assess the expressio of Treg, Th17, Th1, and Th2 immune cells.</p><p><strong>Conclusions: </strong>These results underscored the effective intervention of cordycepin in ameliorating DSS-induced colitis by harmonizing the interplay between GM and immune homeostasis.</p>\",\"PeriodicalId\":93904,\"journal\":{\"name\":\"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie\",\"volume\":\"180 \",\"pages\":\"117394\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopha.2024.117394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biopha.2024.117394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Cordycepin mitigates dextran sulfate sodium-induced colitis through improving gut microbiota composition and modulating Th1/Th2 and Th17/Treg balance.
Background: Imbalances in Th1/Th2 and Th17/Treg immune axes, coupled with disruptions in the gut microbiota (GM), play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD). Cordycepin, a natural anti-inflammatory compound, holds promise in mitigating IBD by rebalancing these immune axes in conjunction with modulating the GM. The aim of this experiment is to investigate the potential of cordycepin in mitigating enteritis and elucidate the underlying mechanisms associated with its ameliorative effects on enteritis.
Methods: On the day of inducing experimental colitis with Dextran Sulfate Sodium (DSS), mice in the DSS + Cordycepin and Cordycepin groups received 50 mg/kg/day Cordycepin via intra-gastric administration (i.g.) for seven consecutive days, respectively. Mice in the DSS and control groups were treated with equal volumes of saline. On day 8, all mice were euthanized under pentobarbital sodium anesthesia.
Results: In a DSS-induced colitis mouse model, Cordycepin treatment led to a significant reduction in the disease activity index (DAI), splenic weight, and colonic pathological injury while simultaneously improving body weight and colonic length. Furthermore, it positively impacted GM composition, resulting in decreased Th1 and Th17 cells, alongside an increase in Th2 and Treg cells. The contents of the mouse colon were extracted for microbial community analysis. Mouse blood was prepared into a single-cell suspension, and flow cytometry was used to assess the expressio of Treg, Th17, Th1, and Th2 immune cells.
Conclusions: These results underscored the effective intervention of cordycepin in ameliorating DSS-induced colitis by harmonizing the interplay between GM and immune homeostasis.