克服高维半线性椭圆偏微分方程数值逼近中的维度诅咒

Christian Beck, Lukas Gonon, Arnulf Jentzen
{"title":"克服高维半线性椭圆偏微分方程数值逼近中的维度诅咒","authors":"Christian Beck, Lukas Gonon, Arnulf Jentzen","doi":"10.1007/s42985-024-00272-4","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, so-called full-history recursive multilevel Picard (MLP) approximation schemes have been introduced and shown to overcome the curse of dimensionality in the numerical approximation of semilinear <i>parabolic</i> partial differential equations (PDEs) with Lipschitz nonlinearities. The key contribution of this article is to introduce and analyze a new variant of MLP approximation schemes for certain semilinear <i>elliptic</i> PDEs with Lipschitz nonlinearities and to prove that the proposed approximation schemes overcome the curse of dimensionality in the numerical approximation of such semilinear elliptic PDEs.</p>","PeriodicalId":74818,"journal":{"name":"SN partial differential equations and applications","volume":"5 6","pages":"31"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469984/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations.\",\"authors\":\"Christian Beck, Lukas Gonon, Arnulf Jentzen\",\"doi\":\"10.1007/s42985-024-00272-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, so-called full-history recursive multilevel Picard (MLP) approximation schemes have been introduced and shown to overcome the curse of dimensionality in the numerical approximation of semilinear <i>parabolic</i> partial differential equations (PDEs) with Lipschitz nonlinearities. The key contribution of this article is to introduce and analyze a new variant of MLP approximation schemes for certain semilinear <i>elliptic</i> PDEs with Lipschitz nonlinearities and to prove that the proposed approximation schemes overcome the curse of dimensionality in the numerical approximation of such semilinear elliptic PDEs.</p>\",\"PeriodicalId\":74818,\"journal\":{\"name\":\"SN partial differential equations and applications\",\"volume\":\"5 6\",\"pages\":\"31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SN partial differential equations and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42985-024-00272-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SN partial differential equations and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42985-024-00272-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,有人提出了所谓的全历程递归多级皮卡(MLP)近似方案,并证明它可以克服具有 Lipschitz 非线性的半线性抛物型偏微分方程(PDEs)数值近似中的维数诅咒。本文的主要贡献在于针对某些具有 Lipschitz 非线性的半线性椭圆偏微分方程引入并分析了一种新的 MLP 近似方案变体,并证明所提出的近似方案克服了此类半线性椭圆偏微分方程数值近似中的维数诅咒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations.

Recently, so-called full-history recursive multilevel Picard (MLP) approximation schemes have been introduced and shown to overcome the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations (PDEs) with Lipschitz nonlinearities. The key contribution of this article is to introduce and analyze a new variant of MLP approximation schemes for certain semilinear elliptic PDEs with Lipschitz nonlinearities and to prove that the proposed approximation schemes overcome the curse of dimensionality in the numerical approximation of such semilinear elliptic PDEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信