{"title":"扰动建模的分解。","authors":"Stefan Peidli","doi":"10.1038/s43588-024-00706-4","DOIUrl":null,"url":null,"abstract":"A recent study proposes a strategy for the prediction of genetic perturbation outcomes by breaking it down into three subtasks: identifying differentially expressed genes, determining expression change directions, and estimating gene expression magnitudes.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"725-726"},"PeriodicalIF":12.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The decomposition of perturbation modeling\",\"authors\":\"Stefan Peidli\",\"doi\":\"10.1038/s43588-024-00706-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent study proposes a strategy for the prediction of genetic perturbation outcomes by breaking it down into three subtasks: identifying differentially expressed genes, determining expression change directions, and estimating gene expression magnitudes.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 10\",\"pages\":\"725-726\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00706-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00706-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A recent study proposes a strategy for the prediction of genetic perturbation outcomes by breaking it down into three subtasks: identifying differentially expressed genes, determining expression change directions, and estimating gene expression magnitudes.