小脑tACS对运动适应的潜能:刺激频率的特征

IF 2.7 3区 医学 Q3 NEUROSCIENCES
Paulo Figueroa-Taiba, Joel Álvarez-Ruf, Paulette Ulloa, Trinidad Bruna-Melo, Liam Espinoza-Maraboli, Pablo Ignacio Burgos, Juan J Mariman
{"title":"小脑tACS对运动适应的潜能:刺激频率的特征","authors":"Paulo Figueroa-Taiba, Joel Álvarez-Ruf, Paulette Ulloa, Trinidad Bruna-Melo, Liam Espinoza-Maraboli, Pablo Ignacio Burgos, Juan J Mariman","doi":"10.1007/s12311-024-01748-0","DOIUrl":null,"url":null,"abstract":"<p><p>Motor adaptation is critical to update motor tasks in new or modified environmental conditions. While the cerebellum supports error-based adaptations, its neural implementation is partially known. By controlling the frequency of cerebellar transcranial alternating current stimulation (c-tACS), we can test the influence of neural oscillation from the cerebellum for motor adaptation. Two independent experiments were conducted. In Experiment 1, 16 participants received four c-tACS protocols (45 Hz, 50 Hz, 55 Hz, and sham) on four different days while they practiced a visuomotor adaptation task (30 degrees CCW) with variable intensity (within-subject design). In Experiment 2, 45 participants separated into three groups received the effect of 45 Hz, 55 Hz c-tACS, and sham, respectively (between-subject design), performing the same visuomotor task with a fixed intensity (0.9 mA). In Experiment 1, 45 Hz and 50 Hz of c-tACS accelerated motor adaptation when participants performed the task only for the first time, independent of the time interval between sessions or the stimulation intensity. The effect of active c-tACS was ratified in Experiment 2, where 45 Hz c-tACS benefits motor adaptation during the complete practice period. Reaction time, velocity, or duration of reaching are not affected by c-tACS. Cerebellar alternating current stimulation is an effective strategy to potentiate visuomotor adaptations. Frequency-dependent effects on the gamma band, especially for 45 Hz c-tACS, ratify the oscillatory profile of cerebellar processes behind the motor adaptation. This can be exploited in future interventions to enhance motor learning.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potentiation of Motor Adaptation Via Cerebellar tACS: Characterization of the Stimulation Frequency.\",\"authors\":\"Paulo Figueroa-Taiba, Joel Álvarez-Ruf, Paulette Ulloa, Trinidad Bruna-Melo, Liam Espinoza-Maraboli, Pablo Ignacio Burgos, Juan J Mariman\",\"doi\":\"10.1007/s12311-024-01748-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motor adaptation is critical to update motor tasks in new or modified environmental conditions. While the cerebellum supports error-based adaptations, its neural implementation is partially known. By controlling the frequency of cerebellar transcranial alternating current stimulation (c-tACS), we can test the influence of neural oscillation from the cerebellum for motor adaptation. Two independent experiments were conducted. In Experiment 1, 16 participants received four c-tACS protocols (45 Hz, 50 Hz, 55 Hz, and sham) on four different days while they practiced a visuomotor adaptation task (30 degrees CCW) with variable intensity (within-subject design). In Experiment 2, 45 participants separated into three groups received the effect of 45 Hz, 55 Hz c-tACS, and sham, respectively (between-subject design), performing the same visuomotor task with a fixed intensity (0.9 mA). In Experiment 1, 45 Hz and 50 Hz of c-tACS accelerated motor adaptation when participants performed the task only for the first time, independent of the time interval between sessions or the stimulation intensity. The effect of active c-tACS was ratified in Experiment 2, where 45 Hz c-tACS benefits motor adaptation during the complete practice period. Reaction time, velocity, or duration of reaching are not affected by c-tACS. Cerebellar alternating current stimulation is an effective strategy to potentiate visuomotor adaptations. Frequency-dependent effects on the gamma band, especially for 45 Hz c-tACS, ratify the oscillatory profile of cerebellar processes behind the motor adaptation. This can be exploited in future interventions to enhance motor learning.</p>\",\"PeriodicalId\":50706,\"journal\":{\"name\":\"Cerebellum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebellum\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12311-024-01748-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-024-01748-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

运动适应对于在新的或改变的环境条件下更新运动任务至关重要。虽然小脑支持基于误差的适应,但其神经实现方式尚不完全清楚。通过控制小脑经颅交变电流刺激(c-tACS)的频率,我们可以测试小脑神经振荡对运动适应的影响。我们进行了两项独立实验。在实验 1 中,16 名参与者在四个不同的日子里接受了四种 c-tACS 方案(45 Hz、50 Hz、55 Hz 和假刺激),同时他们练习了强度可变的视觉运动适应任务(30 度 CCW)(受试者内设计)。在实验 2 中,45 名参与者分成三组,分别接受 45 赫兹、55 赫兹 c-tACS 和假体的影响(受试者间设计),执行相同的视觉运动任务,强度固定(0.9 毫安)。在实验1中,45赫兹和50赫兹的c-tACS加速了参与者在首次执行任务时的运动适应,这与治疗间隔时间或刺激强度无关。实验 2 证实了主动 c-tACS 的效果,45 赫兹 c-tACS 有利于参与者在整个练习期间的运动适应。反应时间、速度或伸手持续时间不受 c-tACS 的影响。小脑交变电流刺激是增强视觉运动适应能力的有效策略。小脑交变电流刺激对伽马波段的频率依赖性影响,尤其是对45赫兹c-tACS的影响,证实了运动适应背后的小脑振荡过程。这可以在未来的干预中加以利用,以提高运动学习能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potentiation of Motor Adaptation Via Cerebellar tACS: Characterization of the Stimulation Frequency.

Motor adaptation is critical to update motor tasks in new or modified environmental conditions. While the cerebellum supports error-based adaptations, its neural implementation is partially known. By controlling the frequency of cerebellar transcranial alternating current stimulation (c-tACS), we can test the influence of neural oscillation from the cerebellum for motor adaptation. Two independent experiments were conducted. In Experiment 1, 16 participants received four c-tACS protocols (45 Hz, 50 Hz, 55 Hz, and sham) on four different days while they practiced a visuomotor adaptation task (30 degrees CCW) with variable intensity (within-subject design). In Experiment 2, 45 participants separated into three groups received the effect of 45 Hz, 55 Hz c-tACS, and sham, respectively (between-subject design), performing the same visuomotor task with a fixed intensity (0.9 mA). In Experiment 1, 45 Hz and 50 Hz of c-tACS accelerated motor adaptation when participants performed the task only for the first time, independent of the time interval between sessions or the stimulation intensity. The effect of active c-tACS was ratified in Experiment 2, where 45 Hz c-tACS benefits motor adaptation during the complete practice period. Reaction time, velocity, or duration of reaching are not affected by c-tACS. Cerebellar alternating current stimulation is an effective strategy to potentiate visuomotor adaptations. Frequency-dependent effects on the gamma band, especially for 45 Hz c-tACS, ratify the oscillatory profile of cerebellar processes behind the motor adaptation. This can be exploited in future interventions to enhance motor learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cerebellum
Cerebellum 医学-神经科学
CiteScore
6.40
自引率
14.30%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction. The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging. The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信