Lei Wang, Xueying Zhang, Xi Huang, Xiaotong Sha, Xulu Li, Jianmei Zheng, Shitong Li, Zhifeng Wei, Feihua Wu
{"title":"高罂粟碱通过抑制DRP1-线粒体裂变-VDAC1轴抑制mtDNA-cGAS-STING通路,从而缓解高糖诱导的血管内皮细胞衰老。","authors":"Lei Wang, Xueying Zhang, Xi Huang, Xiaotong Sha, Xulu Li, Jianmei Zheng, Shitong Li, Zhifeng Wei, Feihua Wu","doi":"10.1096/fj.202401299RR","DOIUrl":null,"url":null,"abstract":"<p>Vascular endothelial senescence is a major risk factor for diabetic vascular complications. Abnormal mitochondrial fission by dynamically related protein 1 (DRP1) accelerates vascular endothelial cell senescence. Homoplantaginin (Hom) is a flavonoid in <i>Salvia plebeia</i> R. Br. with protecting mitochondrial and repairing vascular properties. However, the relevant mechanism of Hom against diabetic vascular endothelial cell senescence remains unclear. Here, we used db/db mice and high glucose (HG)-treated human umbilical vein endothelial cells (HUVECs) to assess the anti-vascular endothelial cell senescence of Hom. We found that Hom inhibited senescence-associated β-galactosidase activity, decreased the levels of senescence markers, and senescence-associated secretory phenotype factors. Additionally, Hom inhibited the expression of cGAS–STING pathway and downstream inflammatory factors. STING inhibitor H-151 delayed endothelial senescence, whereas STING overexpression attenuated the anti-endothelial senescence effect of Hom. Furthermore, we observed that Hom reduced mitochondrial fragmentation and inhibited abnormal mitochondrial fission using transmission electron microscopy. Importantly, Hom has a stronger effect on mitochondrial fission protein than mitochondrial fusion protein, especially downregulated the expression of DRP1. DRP1 inhibitor Mdivi-1 suppressed cGAS-STING pathway and vascular endothelial senescence, yet DRP1 agonist FCCP attenuated the effect of Hom. Surprisingly, Hom blunted abnormal mitochondrial fission mediated by DRP1 mitochondrial localization, suppressed interaction of DRP1 with VDAC1 and prevented VDAC1 oligomerization, which was necessary for mtDNA escape and subsequent cGAS–STING pathway activation. These results revealed a previously unrecognized mechanism that Hom alleviated vascular endothelial senescence by inhibited mtDNA–cGAS–STING signaling pathway via blunting DRP1–mitochondrial fission–VDAC1 axis.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"38 20","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homoplantaginin alleviates high glucose-induced vascular endothelial senescence by inhibiting mtDNA–cGAS–STING pathway via blunting DRP1–mitochondrial fission–VDAC1 axis\",\"authors\":\"Lei Wang, Xueying Zhang, Xi Huang, Xiaotong Sha, Xulu Li, Jianmei Zheng, Shitong Li, Zhifeng Wei, Feihua Wu\",\"doi\":\"10.1096/fj.202401299RR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vascular endothelial senescence is a major risk factor for diabetic vascular complications. Abnormal mitochondrial fission by dynamically related protein 1 (DRP1) accelerates vascular endothelial cell senescence. Homoplantaginin (Hom) is a flavonoid in <i>Salvia plebeia</i> R. Br. with protecting mitochondrial and repairing vascular properties. However, the relevant mechanism of Hom against diabetic vascular endothelial cell senescence remains unclear. Here, we used db/db mice and high glucose (HG)-treated human umbilical vein endothelial cells (HUVECs) to assess the anti-vascular endothelial cell senescence of Hom. We found that Hom inhibited senescence-associated β-galactosidase activity, decreased the levels of senescence markers, and senescence-associated secretory phenotype factors. Additionally, Hom inhibited the expression of cGAS–STING pathway and downstream inflammatory factors. STING inhibitor H-151 delayed endothelial senescence, whereas STING overexpression attenuated the anti-endothelial senescence effect of Hom. Furthermore, we observed that Hom reduced mitochondrial fragmentation and inhibited abnormal mitochondrial fission using transmission electron microscopy. Importantly, Hom has a stronger effect on mitochondrial fission protein than mitochondrial fusion protein, especially downregulated the expression of DRP1. DRP1 inhibitor Mdivi-1 suppressed cGAS-STING pathway and vascular endothelial senescence, yet DRP1 agonist FCCP attenuated the effect of Hom. Surprisingly, Hom blunted abnormal mitochondrial fission mediated by DRP1 mitochondrial localization, suppressed interaction of DRP1 with VDAC1 and prevented VDAC1 oligomerization, which was necessary for mtDNA escape and subsequent cGAS–STING pathway activation. These results revealed a previously unrecognized mechanism that Hom alleviated vascular endothelial senescence by inhibited mtDNA–cGAS–STING signaling pathway via blunting DRP1–mitochondrial fission–VDAC1 axis.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"38 20\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401299RR\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401299RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Homoplantaginin alleviates high glucose-induced vascular endothelial senescence by inhibiting mtDNA–cGAS–STING pathway via blunting DRP1–mitochondrial fission–VDAC1 axis
Vascular endothelial senescence is a major risk factor for diabetic vascular complications. Abnormal mitochondrial fission by dynamically related protein 1 (DRP1) accelerates vascular endothelial cell senescence. Homoplantaginin (Hom) is a flavonoid in Salvia plebeia R. Br. with protecting mitochondrial and repairing vascular properties. However, the relevant mechanism of Hom against diabetic vascular endothelial cell senescence remains unclear. Here, we used db/db mice and high glucose (HG)-treated human umbilical vein endothelial cells (HUVECs) to assess the anti-vascular endothelial cell senescence of Hom. We found that Hom inhibited senescence-associated β-galactosidase activity, decreased the levels of senescence markers, and senescence-associated secretory phenotype factors. Additionally, Hom inhibited the expression of cGAS–STING pathway and downstream inflammatory factors. STING inhibitor H-151 delayed endothelial senescence, whereas STING overexpression attenuated the anti-endothelial senescence effect of Hom. Furthermore, we observed that Hom reduced mitochondrial fragmentation and inhibited abnormal mitochondrial fission using transmission electron microscopy. Importantly, Hom has a stronger effect on mitochondrial fission protein than mitochondrial fusion protein, especially downregulated the expression of DRP1. DRP1 inhibitor Mdivi-1 suppressed cGAS-STING pathway and vascular endothelial senescence, yet DRP1 agonist FCCP attenuated the effect of Hom. Surprisingly, Hom blunted abnormal mitochondrial fission mediated by DRP1 mitochondrial localization, suppressed interaction of DRP1 with VDAC1 and prevented VDAC1 oligomerization, which was necessary for mtDNA escape and subsequent cGAS–STING pathway activation. These results revealed a previously unrecognized mechanism that Hom alleviated vascular endothelial senescence by inhibited mtDNA–cGAS–STING signaling pathway via blunting DRP1–mitochondrial fission–VDAC1 axis.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.