Serena Mancarella, Isabella Gigante, Elena Pizzuto, Grazia Serino, Alberta Terzi, Francesco Dituri, Eugenio Maiorano, Leonardo Vincenti, Mario De Bellis, Francesco Ardito, Diego F Calvisi, Gianluigi Giannelli
{"title":"针对癌症相关成纤维细胞/肿瘤细胞交叉对话,通过细胞周期停滞抑制肝内胆管癌的进展。","authors":"Serena Mancarella, Isabella Gigante, Elena Pizzuto, Grazia Serino, Alberta Terzi, Francesco Dituri, Eugenio Maiorano, Leonardo Vincenti, Mario De Bellis, Francesco Ardito, Diego F Calvisi, Gianluigi Giannelli","doi":"10.1186/s13046-024-03210-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer-associated fibroblasts (CAFs), mainly responsible for the desmoplastic reaction hallmark of intrahepatic Cholangiocarcinoma (iCCA), likely have a role in tumor aggressiveness and resistance to therapy, although the molecular mechanisms involved are unknown. Aim of the study is to investigate how targeting hCAF/iCCA cross-talk with a Notch1 inhibitor, namely Crenigacestat, may affect cancer progression.</p><p><strong>Methods: </strong>We used different in vitro models in 2D and established new 3D hetero-spheroids with iCCA cells and human (h)CAFs. The results were confirmed in a xenograft model, and explanted tumoral tissues underwent transcriptomic and bioinformatic analysis.</p><p><strong>Results: </strong>hCAFs/iCCA cross-talk sustains increased migration of both KKU-M213 and KKU-M156 cells, while Crenigacestat significantly inhibits only the cross-talk stimulated migration. Hetero-spheroids grew larger than homo-spheroids, formed by only iCCA cells. Crenigacestat significantly reduced the invasion and growth of hetero- but not of homo-spheroids. In xenograft models, hCAFs/KKU-M213 tumors grew significantly larger than KKU-M213 tumors, but were significantly reduced in volume by Crenigacestat treatment, which also significantly decreased the fibrotic reaction. Ingenuity pathway analysis revealed that genes of hCAFs/KKU-M213 but not of KKU-M213 tumors increased tumor lesions, and that Crenigacestat treatment inhibited the modulated canonical pathways. Cell cycle checkpoints were the most notably modulated pathway and Crenigacestat reduced CCNE2 gene expression, consequently inducing cell cycle arrest. In hetero-spheroids, the number of cells increased in the G2/M cell cycle phase, while Crenigacestat significantly decreased cell numbers in the G2/M phase in hetero but not in homo-spheroids.</p><p><strong>Conclusions: </strong>The hCAFs/iCCA cross-talk is a new target for reducing cancer progression with drugs such as Crenigacestat.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"286"},"PeriodicalIF":11.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484308/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting cancer-associated fibroblasts/tumor cells cross-talk inhibits intrahepatic cholangiocarcinoma progression via cell-cycle arrest.\",\"authors\":\"Serena Mancarella, Isabella Gigante, Elena Pizzuto, Grazia Serino, Alberta Terzi, Francesco Dituri, Eugenio Maiorano, Leonardo Vincenti, Mario De Bellis, Francesco Ardito, Diego F Calvisi, Gianluigi Giannelli\",\"doi\":\"10.1186/s13046-024-03210-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cancer-associated fibroblasts (CAFs), mainly responsible for the desmoplastic reaction hallmark of intrahepatic Cholangiocarcinoma (iCCA), likely have a role in tumor aggressiveness and resistance to therapy, although the molecular mechanisms involved are unknown. Aim of the study is to investigate how targeting hCAF/iCCA cross-talk with a Notch1 inhibitor, namely Crenigacestat, may affect cancer progression.</p><p><strong>Methods: </strong>We used different in vitro models in 2D and established new 3D hetero-spheroids with iCCA cells and human (h)CAFs. The results were confirmed in a xenograft model, and explanted tumoral tissues underwent transcriptomic and bioinformatic analysis.</p><p><strong>Results: </strong>hCAFs/iCCA cross-talk sustains increased migration of both KKU-M213 and KKU-M156 cells, while Crenigacestat significantly inhibits only the cross-talk stimulated migration. Hetero-spheroids grew larger than homo-spheroids, formed by only iCCA cells. Crenigacestat significantly reduced the invasion and growth of hetero- but not of homo-spheroids. In xenograft models, hCAFs/KKU-M213 tumors grew significantly larger than KKU-M213 tumors, but were significantly reduced in volume by Crenigacestat treatment, which also significantly decreased the fibrotic reaction. Ingenuity pathway analysis revealed that genes of hCAFs/KKU-M213 but not of KKU-M213 tumors increased tumor lesions, and that Crenigacestat treatment inhibited the modulated canonical pathways. Cell cycle checkpoints were the most notably modulated pathway and Crenigacestat reduced CCNE2 gene expression, consequently inducing cell cycle arrest. In hetero-spheroids, the number of cells increased in the G2/M cell cycle phase, while Crenigacestat significantly decreased cell numbers in the G2/M phase in hetero but not in homo-spheroids.</p><p><strong>Conclusions: </strong>The hCAFs/iCCA cross-talk is a new target for reducing cancer progression with drugs such as Crenigacestat.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"43 1\",\"pages\":\"286\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484308/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-024-03210-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03210-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Background: Cancer-associated fibroblasts (CAFs), mainly responsible for the desmoplastic reaction hallmark of intrahepatic Cholangiocarcinoma (iCCA), likely have a role in tumor aggressiveness and resistance to therapy, although the molecular mechanisms involved are unknown. Aim of the study is to investigate how targeting hCAF/iCCA cross-talk with a Notch1 inhibitor, namely Crenigacestat, may affect cancer progression.
Methods: We used different in vitro models in 2D and established new 3D hetero-spheroids with iCCA cells and human (h)CAFs. The results were confirmed in a xenograft model, and explanted tumoral tissues underwent transcriptomic and bioinformatic analysis.
Results: hCAFs/iCCA cross-talk sustains increased migration of both KKU-M213 and KKU-M156 cells, while Crenigacestat significantly inhibits only the cross-talk stimulated migration. Hetero-spheroids grew larger than homo-spheroids, formed by only iCCA cells. Crenigacestat significantly reduced the invasion and growth of hetero- but not of homo-spheroids. In xenograft models, hCAFs/KKU-M213 tumors grew significantly larger than KKU-M213 tumors, but were significantly reduced in volume by Crenigacestat treatment, which also significantly decreased the fibrotic reaction. Ingenuity pathway analysis revealed that genes of hCAFs/KKU-M213 but not of KKU-M213 tumors increased tumor lesions, and that Crenigacestat treatment inhibited the modulated canonical pathways. Cell cycle checkpoints were the most notably modulated pathway and Crenigacestat reduced CCNE2 gene expression, consequently inducing cell cycle arrest. In hetero-spheroids, the number of cells increased in the G2/M cell cycle phase, while Crenigacestat significantly decreased cell numbers in the G2/M phase in hetero but not in homo-spheroids.
Conclusions: The hCAFs/iCCA cross-talk is a new target for reducing cancer progression with drugs such as Crenigacestat.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.