Andrew J Zimolzak, Sundas P Khan, Hardeep Singh, Jessica A Davila
{"title":"在 Epic Cosmos 中应用癌症诊断数字质量标准。","authors":"Andrew J Zimolzak, Sundas P Khan, Hardeep Singh, Jessica A Davila","doi":"10.1093/jamia/ocae253","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Missed and delayed cancer diagnoses are common, harmful, and often preventable. We previously validated a digital quality measure (dQM) of emergency presentation (EP) of lung cancer in 2 US health systems. This study aimed to apply the dQM to a new national electronic health record (EHR) database and examine demographic associations.</p><p><strong>Materials and methods: </strong>We applied the dQM (emergency encounter followed by new lung cancer diagnosis within 30 days) to Epic Cosmos, a deidentified database covering 184 million US patients. We examined dQM associations with sociodemographic factors.</p><p><strong>Results: </strong>The overall EP rate was 19.6%. EP rate was higher in Black vs White patients (24% vs 19%, P < .001) and patients with younger age, higher social vulnerability, lower-income ZIP code, and self-reported transport difficulties.</p><p><strong>Discussion: </strong>We successfully applied a dQM based on cancer EP to the largest US EHR database.</p><p><strong>Conclusion: </strong>This dQM could be a marker for sociodemographic vulnerabilities in cancer diagnosis.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a digital quality measure for cancer diagnosis in Epic Cosmos.\",\"authors\":\"Andrew J Zimolzak, Sundas P Khan, Hardeep Singh, Jessica A Davila\",\"doi\":\"10.1093/jamia/ocae253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Missed and delayed cancer diagnoses are common, harmful, and often preventable. We previously validated a digital quality measure (dQM) of emergency presentation (EP) of lung cancer in 2 US health systems. This study aimed to apply the dQM to a new national electronic health record (EHR) database and examine demographic associations.</p><p><strong>Materials and methods: </strong>We applied the dQM (emergency encounter followed by new lung cancer diagnosis within 30 days) to Epic Cosmos, a deidentified database covering 184 million US patients. We examined dQM associations with sociodemographic factors.</p><p><strong>Results: </strong>The overall EP rate was 19.6%. EP rate was higher in Black vs White patients (24% vs 19%, P < .001) and patients with younger age, higher social vulnerability, lower-income ZIP code, and self-reported transport difficulties.</p><p><strong>Discussion: </strong>We successfully applied a dQM based on cancer EP to the largest US EHR database.</p><p><strong>Conclusion: </strong>This dQM could be a marker for sociodemographic vulnerabilities in cancer diagnosis.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocae253\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae253","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
目标:癌症漏诊和延误诊断是常见的、有害的,而且往往是可以预防的。我们曾在美国的两个医疗系统中验证了肺癌急诊(EP)的数字质量测量(dQM)。本研究旨在将 dQM 应用于一个新的全国电子健康记录(EHR)数据库,并研究人口统计学关联:我们将 dQM(急诊后 30 天内新诊断出肺癌)应用于 Epic Cosmos,这是一个涵盖 1.84 亿美国患者的去身份化数据库。我们研究了 dQM 与社会人口因素的关系:结果:总体 EP 率为 19.6%。黑人患者的 EP 率高于白人患者(24% 对 19%,P 讨论):我们在美国最大的电子病历数据库中成功应用了基于癌症 EP 的 dQM:结论:该 dQM 可以作为癌症诊断中社会人口脆弱性的标记。
Application of a digital quality measure for cancer diagnosis in Epic Cosmos.
Objectives: Missed and delayed cancer diagnoses are common, harmful, and often preventable. We previously validated a digital quality measure (dQM) of emergency presentation (EP) of lung cancer in 2 US health systems. This study aimed to apply the dQM to a new national electronic health record (EHR) database and examine demographic associations.
Materials and methods: We applied the dQM (emergency encounter followed by new lung cancer diagnosis within 30 days) to Epic Cosmos, a deidentified database covering 184 million US patients. We examined dQM associations with sociodemographic factors.
Results: The overall EP rate was 19.6%. EP rate was higher in Black vs White patients (24% vs 19%, P < .001) and patients with younger age, higher social vulnerability, lower-income ZIP code, and self-reported transport difficulties.
Discussion: We successfully applied a dQM based on cancer EP to the largest US EHR database.
Conclusion: This dQM could be a marker for sociodemographic vulnerabilities in cancer diagnosis.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.